How Are Gravitational Waves Connected to Black Holes?

Click For Summary
SUMMARY

The discussion centers on the relationship between gravitational waves and black holes, particularly in the context of the paper "Observation of Gravitational Waves from a Binary Black Hole Merger." Participants emphasize that gravitational waves are emitted when a black hole's horizon symmetry is perturbed, as seen in black hole mergers detected by LIGO. Key concepts include Price's Theorem, which describes how black holes radiate away their "hair," and the no-hair theorem, which defines the symmetry of black holes. The conversation also touches on the implications of quantum gravity in this context.

PREREQUISITES
  • General Relativity principles
  • Understanding of gravitational waves
  • Familiarity with black hole physics, specifically Kerr black holes
  • Knowledge of Price's Theorem and the no-hair theorem
NEXT STEPS
  • Read the LIGO paper on gravitational waves: "Detection of GW150914"
  • Study Price's Theorem in detail to understand gravitational wave emission
  • Explore the no-hair theorem and its implications for black hole physics
  • Investigate the role of quantum gravity in black hole "hair" and gravitational wave generation
USEFUL FOR

Physicists, astrophysicists, and students of General Relativity interested in the dynamics of black holes and the generation of gravitational waves.

leo.
Messages
90
Reaction score
4
This is something I've been curious for some time. I've heard that there is a relation between gravitational waves and black holes. Moreover, this year the quite important paper "Observation of Gravitational Waves from a Binary Black Hole Merger" was published.

Now, I'm starting to study General Relativity and I want to understand better the relation between gravitational waves and black holes from a more rigorous standpoint. In truth I would like to get to some mathematical derivation of that relation. Something that starting from black hole mathematics we end up showing there is a gravitational wave generation.

Is there some paper about that out there? I've been searching for this in the last few days but didn't find anything. I believe this might be in the context of the Kerr black holes as it is the one related to rotation as far as I know. Any paper is appreciated!
 
Physics news on Phys.org
Heuristically, the relationship between gravitational waves and black holes is that, any time something happens to a black hole that perturbs the symmetry of its horizon, the hole will radiate gravitational waves until the horizon's symmetry is restored. Note that this applies to any black hole, not just a rotating (Kerr) one. The black hole merger that was recently detected by LIGO is one example of something that perturbs the symmetry of a hole's horizon--the merger creates a larger hole whose horizon is asymmetrical, because the two holes that merged to form it were not identical and were not moving in perfectly symmetrical orbits around their common center of mass before they merged. So gravitational waves are produced by the merger.

The general mathematical result underlying the above is called Price's Theorem; it is described briefly on the Wikipedia page for its discoverer, Richard Price:

https://en.wikipedia.org/wiki/Richard_H._Price

The more general property of black holes that describes what "symmetrical" means is the "no hair theorem"; Price's Theorem shows us that gravitational waves are a way that a black hole that has "hair" because of something that just happened to it radiates away the "hair". But different kinds of "hair" correspond to different kinds of radiation; for example, a hole that has a magnetic field because of something that just happened to it will radiate it away as electromagnetic waves, not gravitational waves. There has been plenty of study of the general "no hair" theorem, and you should be able to find papers on that topic; but I don't know that many of them will talk about gravitational waves specifically.
 
leo. said:
This is something I've been curious for some time. I've heard that there is a relation between gravitational waves and black holes. Moreover, this year the quite important paper "Observation of Gravitational Waves from a Binary Black Hole Merger" was published.

Now, I'm starting to study General Relativity and I want to understand better the relation between gravitational waves and black holes from a more rigorous standpoint. In truth I would like to get to some mathematical derivation of that relation. Something that starting from black hole mathematics we end up showing there is a gravitational wave generation.

Is there some paper about that out there? I've been searching for this in the last few days but didn't find anything. I believe this might be in the context of the Kerr black holes as it is the one related to rotation as far as I know. Any paper is appreciated!

I'd suggest reading the LIGO paper https://dcc.ligo.org/public/0122/P150914/014/LIGO-P150914_Detection_of_GW150914.pdf

In particular, the section of the paper that talks about why it is felt that the gravity wave came from the inspiral of a pair of black holes, rather than some other source (such as a neutron star and a black hole) seems relevant to your question.

The basic features of GW150914 point to it being produced by the coalescence of two black holes.
...
A pair of neutron stars, while compact, would not have the required mass, while a black hole neutron star binary with the deduced chirp mass would have a very large total mass,and would thus merge at much lower frequency.
 
PeterDonis said:
Price's Theorem shows us that gravitational waves are a way that a black hole that has "hair" because of something that just happened to it radiates away the "hair".
I never understood the argument really. Assuming pure (not quantum) GR, if the hole is ratiating hair at exponential rate, it will never radiate them completely! So this is rather the argument that once the hole got hair, it will have them forever (shrinking exponentially though, but never reaching zero anyway).

Is quantum gravity also a part of this argument? Don't physicists add something like "fluctuations hit the Planck size at some point and then they vanish"?

Let me ask again: does pure non-quantum general relativity say that a hairy hole loses all hair completely in finite time?
 
haael said:
Assuming pure (not quantum) GR, if the hole is ratiating hair at exponential rate, it will never radiate them completely!

Do you mean "radiate at an exponentially decreasing rate"? AFAIK that's not what GR predicts. But you would probably have to dig into the literature to see the detailed math; I don't know that this subject is treated in detail in textbooks. (Price's Theorem hadn't been discovered yet when MTW was published, IIRC, and I don't remember Wald discussing it in any detail.)

haael said:
Is quantum gravity also a part of this argument?

No. Quantum "hair" is a separate issue--I believe there are some quantum analogues of no-hair theorems, but I don't think it's as clear cut as it is in pure classical GR.

haael said:
does pure non-quantum general relativity say that a hairy hole loses all hair completely in finite time?

As best I understand it, yes.
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 43 ·
2
Replies
43
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 43 ·
2
Replies
43
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K