Relation of two complex series

gustav1139
Messages
14
Reaction score
0

Homework Statement



Suppose that ##\left\{a_n\right\}## is a sequence of complex numbers with the property that ##\sum{a_n b_n}## converges for every complex sequence ##\left\{b_n\right\}## such that ##\sum{|b_n|^2}<\infty##. Show that ##\sum{|a_n|^2}<\infty##.

Homework Equations


The Attempt at a Solution



We know that ##\lim{a_n}=0##, since if that were not the case then for ##b_n=\frac{1}{n a_n}##, ##\sum{|b_n|^2}<\infty##, but ##\sum{a_n b_n}=\sum{\frac{1}{n}}## diverges. Not sure that's helpful though.My other thought was to try to prove the contrapositive, that given ##\left\{a_n\right\}## such that ##\sum{|a_n|^2}## diverges, we could find a ##\left\{b_n\right\}## such that ##\sum{a_n b_n}## diverges as well.

So we can find a sequence ##\left\{n_k\right\}## such that ##\sum_{n_k+1}^{n_{k+1}}{|a_n|^2}>1##. Then of course, we'd like to pick b's in such a way that ##\sum{a_n b_n}##, while they still converge in the square. But since we don't know how far apart the ##n_k## are, I can't figure out a way to do that. If ##b_n=\left|\frac{\bar{a_n}}{n}\right|##, then the b's converge the way we want them to, but it's not clear that ##\sum{a_n b_n}## diverges. On the other hand, if we choose something that depends on ##a_n## in some way, which seems more promising in some ways, then it's not clear that the b's converge the way they're supposed to. For instance if ##b_n=\left|\frac{\bar{a_n}}{c_n}\right|##, where ##c_n=k## when ##k<n\leq k+1##, then the c's are growing pretty slowly (presumably) so I shouldn't think the b's would converge properly.
 
Last edited:
Physics news on Phys.org
It seems like it may have to see with Cauchy-Schwarz:

We know if (bn,bn) < oo , then (an,bn)^2<oo . Let me try some more.
 
gustav1139 said:
We know that ##\lim{a_n}=0##, since if that were not the case then for ##b_n=\frac{1}{n a_n}##, ##\sum{|b_n|^2}<\infty##, but ##\sum{a_n b_n}=\sum{\frac{1}{n}}## diverges. Not sure that's helpful though.
This argument doesn't work for an=1 since ##\sum{|b_n|^2}## will diverge.
 
vela said:
This argument doesn't work for an=1 since ##\sum{|b_n|^2}## will diverge.

...##\sum{\frac{1}{n^2}}## converges... doesn't it?
 
D'oh! Never mind. ;)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top