The rate that a stationary clock slows down near a massive object, relative to one far away, can be read off from the Schwartzschild metric:(adsbygoogle = window.adsbygoogle || []).push({});

$$c^2d\tau^2=\left(1-\frac{r_s}{r}\right)c^2dt^2-\left(1-\frac{r_s}{r}\right)^{-1}dr^2-r^2\left(d\theta^2+\sin^2\theta d\phi^2\right)$$

by setting ##dr=d\theta=d\phi=0## to give:

$$\frac{d\tau}{dt}=\left(1-\frac{r_s}{r}\right)^{1/2}$$

where the Schwartzschild radius ##r_s=2GM/c^2##.

If the clock is running slowly compared to a distant clock is this equivalent to the clock having a lower energy compared to a distant clock?

If the clock was an atomic system then the frequency of its oscillation would be less near the massive object. As energy is proportional to frequency for atomic systems then I would have thought that this would imply that the energy of the atomic system would be less near the massive object than it was far away.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Relationship between gravitational time dilation and energy?

Loading...

Similar Threads - Relationship between gravitational | Date |
---|---|

B Is there a circular relationship between SR and GR? | Jan 21, 2018 |

B The Relationship Between Gravity and Time | Mar 2, 2017 |

A Relationship between metric tensor and position vector | Jul 23, 2016 |

I Relationship between quadratic and square-root lagrangians | Jun 23, 2016 |

The relationship between F=ma and E=mc2 | Jan 6, 2016 |

**Physics Forums - The Fusion of Science and Community**