Relationship of Modulus to thermal expansion

Click For Summary
The discussion focuses on the relationship between thermal expansion and modulus of elasticity in UV-cured polymers constrained within rigid cylinders. It highlights that if a polymer is constrained, thermal expansion does not occur, and outlines a method to calculate thermal expansion, stress, and force. The thermal coefficient of expansion and Young's modulus are emphasized as key properties, with formulas provided for understanding their relationship. The importance of using correct terminology to avoid confusion is also noted. Overall, the calculations for different polymers can enhance understanding of these relationships.
joeaccetta
Messages
4
Reaction score
0
I'm trying to figure out how to relate expected thermal expansion of a uv cured polymer within a rigid cylinder to a modulus specification. The issue is the expected change in refractive index due to thermal expansion. The expansion coefficients are not available. Anybody have an idea. Do greater specified moduli lead to increased or decreased expansion?
 
Engineering news on Phys.org
The thermal coefficient of expansion is one property. It describes how much an unconstrained object changes size with temperature change.

The modulus of elasticity, AKA elastic modulus, AKA Young's modulus, describes how much an object changes size with stress change.

You need to use the correct terms to avoid confusion.

If a polymer is constrained inside a rigid cylinder, then there is no thermal expansion. That is a simple problem to solve. Step 1: Calculate thermal expansion from temperature change. Step 2: Calculate stress to force the part back to its original size. Step 3 (optional): Calculate the force to get that stress.

One good way to get a better understanding of the relationships is to do the calculations for one polymer, then repeat for a different polymer with different properties.
 
You didn’t say which modulus you mean but I’ll also assume that it’s just Young’s modulus and share simple formulas involving thermal expansion coefficient and aforementioned modulus of elasticity: $$\Delta L= \alpha L_{0} \Delta T$$ $$\varepsilon=\frac{\Delta L}{L_{0}}$$ $$E=\frac{\sigma}{\varepsilon}$$ $$\sigma=E \varepsilon=E \alpha \Delta T$$
 
jrmichler said:
The thermal coefficient of expansion is one property. It describes how much an unconstrained object changes size with temperature change.

The modulus of elasticity, AKA elastic modulus, AKA Young's modulus, describes how much an object changes size with stress change.

You need to use the correct terms to avoid confusion.

If a polymer is constrained inside a rigid cylinder, then there is no thermal expansion. That is a simple problem to solve. Step 1: Calculate thermal expansion from temperature change. Step 2: Calculate stress to force the part back to its original size. Step 3 (optional): Calculate the force to get that stress.

One good way to get a better understanding of the relationships is to do the calculations for one polymer, then repeat for a different polymer with different properties.
Thanks. Unfortunately, the particular modulus was not specified.
 
jrmichler said:
The thermal coefficient of expansion is one property. It describes how much an unconstrained object changes size with temperature change.

The modulus of elasticity, AKA elastic modulus, AKA Young's modulus, describes how much an object changes size with stress change.

You need to use the correct terms to avoid confusion.

If a polymer is constrained inside a rigid cylinder, then there is no thermal expansion. That is a simple problem to solve. Step 1: Calculate thermal expansion from temperature change. Step 2: Calculate stress to force the part back to its original size. Step 3 (optional): Calculate the force to get that stress.

One good way to get a better understanding of the relationships is to do the calculations for one polymer, then repeat for a different polymer with different properties.
Thanks. Unfortunately the particular modulus is not specified but probably Youngs.
 
FEAnalyst said:
You didn’t say which modulus you mean but I’ll also assume that it’s just Young’s modulus and share simple formulas involving thermal expansion coefficient and aforementioned modulus of elasticity: $$\Delta L= \alpha L_{0} \Delta T$$ $$\varepsilon=\frac{\Delta L}{L_{0}}$$ $$E=\frac{\sigma}{\varepsilon}$$ $$\sigma=E \varepsilon=E \alpha \Delta T$$
Thank you
 
Thread 'Local pressures in turbocharger housing?'
This is question for fluid mechanics. Static pressure in the exhaust manifold(turbo car engine) is usually 1.2 to 2.5 times higher than the boost pressure(intake manifold pressure).Boost pressure is around 1bar guage pressure(2bar absolute). Can the local static pressure somewhere inside a turbine housing ever be lower than atmospheric pressure, is this possible? here some links where CFD is used...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
21K
  • · Replies 5 ·
Replies
5
Views
24K
Replies
2
Views
5K
  • · Replies 53 ·
2
Replies
53
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K