Relationship of Modulus to thermal expansion

AI Thread Summary
The discussion focuses on the relationship between thermal expansion and modulus of elasticity in UV-cured polymers constrained within rigid cylinders. It highlights that if a polymer is constrained, thermal expansion does not occur, and outlines a method to calculate thermal expansion, stress, and force. The thermal coefficient of expansion and Young's modulus are emphasized as key properties, with formulas provided for understanding their relationship. The importance of using correct terminology to avoid confusion is also noted. Overall, the calculations for different polymers can enhance understanding of these relationships.
joeaccetta
Messages
4
Reaction score
0
I'm trying to figure out how to relate expected thermal expansion of a uv cured polymer within a rigid cylinder to a modulus specification. The issue is the expected change in refractive index due to thermal expansion. The expansion coefficients are not available. Anybody have an idea. Do greater specified moduli lead to increased or decreased expansion?
 
Engineering news on Phys.org
The thermal coefficient of expansion is one property. It describes how much an unconstrained object changes size with temperature change.

The modulus of elasticity, AKA elastic modulus, AKA Young's modulus, describes how much an object changes size with stress change.

You need to use the correct terms to avoid confusion.

If a polymer is constrained inside a rigid cylinder, then there is no thermal expansion. That is a simple problem to solve. Step 1: Calculate thermal expansion from temperature change. Step 2: Calculate stress to force the part back to its original size. Step 3 (optional): Calculate the force to get that stress.

One good way to get a better understanding of the relationships is to do the calculations for one polymer, then repeat for a different polymer with different properties.
 
You didn’t say which modulus you mean but I’ll also assume that it’s just Young’s modulus and share simple formulas involving thermal expansion coefficient and aforementioned modulus of elasticity: $$\Delta L= \alpha L_{0} \Delta T$$ $$\varepsilon=\frac{\Delta L}{L_{0}}$$ $$E=\frac{\sigma}{\varepsilon}$$ $$\sigma=E \varepsilon=E \alpha \Delta T$$
 
jrmichler said:
The thermal coefficient of expansion is one property. It describes how much an unconstrained object changes size with temperature change.

The modulus of elasticity, AKA elastic modulus, AKA Young's modulus, describes how much an object changes size with stress change.

You need to use the correct terms to avoid confusion.

If a polymer is constrained inside a rigid cylinder, then there is no thermal expansion. That is a simple problem to solve. Step 1: Calculate thermal expansion from temperature change. Step 2: Calculate stress to force the part back to its original size. Step 3 (optional): Calculate the force to get that stress.

One good way to get a better understanding of the relationships is to do the calculations for one polymer, then repeat for a different polymer with different properties.
Thanks. Unfortunately, the particular modulus was not specified.
 
jrmichler said:
The thermal coefficient of expansion is one property. It describes how much an unconstrained object changes size with temperature change.

The modulus of elasticity, AKA elastic modulus, AKA Young's modulus, describes how much an object changes size with stress change.

You need to use the correct terms to avoid confusion.

If a polymer is constrained inside a rigid cylinder, then there is no thermal expansion. That is a simple problem to solve. Step 1: Calculate thermal expansion from temperature change. Step 2: Calculate stress to force the part back to its original size. Step 3 (optional): Calculate the force to get that stress.

One good way to get a better understanding of the relationships is to do the calculations for one polymer, then repeat for a different polymer with different properties.
Thanks. Unfortunately the particular modulus is not specified but probably Youngs.
 
FEAnalyst said:
You didn’t say which modulus you mean but I’ll also assume that it’s just Young’s modulus and share simple formulas involving thermal expansion coefficient and aforementioned modulus of elasticity: $$\Delta L= \alpha L_{0} \Delta T$$ $$\varepsilon=\frac{\Delta L}{L_{0}}$$ $$E=\frac{\sigma}{\varepsilon}$$ $$\sigma=E \varepsilon=E \alpha \Delta T$$
Thank you
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Back
Top