Relative velocity of two cars crashing into each other

Click For Summary
SUMMARY

The discussion centers on the relative velocities of two cars colliding, specifically comparing two scenarios: one where both cars travel at 100 km/h towards each other, and another where one car travels at 200 km/h while the other is stationary. Participants conclude that while the relative velocity is the same in both cases, the kinetic energy involved differs significantly due to the squared velocity in kinetic energy calculations. The kinetic energy released in the second scenario is twice that of the first, leading to potentially greater damage despite the same relative velocity. The importance of analyzing momentum and the difference in kinetic energy loss is emphasized for understanding the crash dynamics.

PREREQUISITES
  • Understanding of basic physics concepts such as kinetic energy and momentum.
  • Familiarity with the formula for kinetic energy: KE = 1/2 mv².
  • Knowledge of frame of reference in physics, particularly in collision scenarios.
  • Basic principles of accident investigation and the effects of speed on collision outcomes.
NEXT STEPS
  • Calculate kinetic energy for various collision scenarios using the formula KE = 1/2 mv².
  • Explore the concept of momentum conservation in elastic and inelastic collisions.
  • Research the effects of relative speed on damage assessment in vehicle collisions.
  • Study accident investigation techniques focusing on speed and impact analysis.
USEFUL FOR

Physics students, automotive engineers, accident investigators, and anyone interested in understanding the dynamics of vehicle collisions and their implications for safety and damage assessment.

ninuss
Messages
2
Reaction score
0
So I read these two other threads:

https://www.physicsforums.com/threads/relative-speed-of-two-cars.642873/

https://www.physicsforums.com/threads/two-cars-colliding.740948/

And gathered what I already thought was correct, that the relative velocities of two cars of equal mass crashing into each other are the same in examples 1) and 2),

where in example 1), car X is moving a 100km/h in a straight line towards car Y, and car Y is moving at 100km/h in a straight line towards car X;

and in example 2), car X is moving at 200km/h in a straight line towards car Y, and car Y is moving at 0km/h towards car X (car Y is standing still)

Now, my question is, would the crashes in these two examples produce the same kind of damage to the cars? I was told that in example 2, the kinetic energy released is twice as much as in example 1, because kinetic energy is calculated by squaring velocity, and so simply adding the velocity of each car and then squaring it, is not the same as squaring each and then adding it.

But my thinking is that if the relative velocity is the same, the crash should be the same..

In example 1), both cars would roughly come to a full stop (or they may bounce a little), and in example 2), after the crash, both cars would continue moving in the same direction as car X, but at a slower speed. That's the only difference I can come up with. But it still makes no sense to me that the damage would be doubled when the relative velocity is the same.
 
Physics news on Phys.org
Thing to do is work it out in terms of momentum (which is conserved) and check the kinetic energy loss (kinetic energy is not conserved: the remainder goes into crushing the cars).

[edit]for simplicity use the same mass for each car

My bet is you can prove yourself correct !
 
Note that the energy available to damage the cars is not the total kinetic energy. It's the difference between the initial and final kinetic energies. As BvU says, you can calculate this and the result should be the same in both cases.

Note also that this is only the effect of the initial collision. What happens next does depend on speed relative to the Earth - there is a big difference between stationary wreckage and wreckage doing 100km/h.
 
  • Like
Likes   Reactions: PeroK
ninuss said:
Now, my question is, would the crashes in these two examples produce the same kind of damage to the cars? I was told that in example 2, the kinetic energy released is twice as much as in example 1, because kinetic energy is calculated by squaring velocity, and so simply adding the velocity of each car and then squaring it, is not the same as squaring each and then adding it.

But my thinking is that if the relative velocity is the same, the crash should be the same..

In example 1), both cars would roughly come to a full stop (or they may bounce a little), and in example 2), after the crash, both cars would continue moving in the same direction as car X, but at a slower speed. That's the only difference I can come up with. But it still makes no sense to me that the damage would be doubled when the relative velocity is the same.

From the basic point of view, the two crashes are the same. Kinetic energy is frame dependent, so you could study the second crash from a car traveling at ##100 km/h## and, in this frame, kinetic energy of the two cars is the same.

But, there is a critical practical difference between the two crashes: the speed of each car relative to the road and the air. It would be interesting to know what practical differences this might make to the scenario, from an accident investigation point of view!
 
BvU said:
My bet is you can prove yourself correct !

I hope so! :)

Ibix said:
Note that the energy available to damage the cars is not the total kinetic energy. It's the difference between the initial and final kinetic energies. As BvU says, you can calculate this and the result should be the same in both cases.

PeroK said:
From the basic point of view, the two crashes are the same. Kinetic energy is frame dependent, so you could study the second crash from a car traveling at ##100 km/h## and, in this frame, kinetic energy of the two cars is the same.

Awesome! Thanks a lot!

Ibix said:
Note also that this is only the effect of the initial collision. What happens next does depend on speed relative to the Earth - there is a big difference between stationary wreckage and wreckage doing 100km/h.

PeroK said:
But, there is a critical practical difference between the two crashes: the speed of each car relative to the road and the air. It would be interesting to know what practical differences this might make to the scenario, from an accident investigation point of view!

Very interesting points!
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K