Relaxation times/frequencies of Polarization Mechanisms

  • Context: Graduate 
  • Thread starter Thread starter citw
  • Start date Start date
  • Tags Tags
    Polarization
Click For Summary
SUMMARY

The discussion centers on the frequency dependence of various polarization mechanisms: space charge/interface, dipole, ionic, and electronic. It is established that these mechanisms decrease in frequency in the order of space charge/interface, dipole, ionic, and electronic. The maximal frequency is influenced by the inertia of the degrees of freedom, with ions moving slower than electrons due to their mass. The real part of the dielectric constant can be derived from the absorptive characteristics of these mechanisms using the Kramers-Kronig transformation.

PREREQUISITES
  • Understanding of polarization mechanisms in materials
  • Familiarity with the Drude model of electrical conduction
  • Knowledge of dielectric constants and their measurement
  • Basic principles of macroscopic electrodynamics
NEXT STEPS
  • Research Kramers-Kronig transformation applications in dielectric studies
  • Explore the Drude model and its implications for interface polarization
  • Investigate the characteristics of ionic polarization and optical phonons
  • Study the relationship between frequency and inertia in polarization mechanisms
USEFUL FOR

Physicists, materials scientists, and electrical engineers interested in the behavior of polarization mechanisms in various materials and their implications for dielectric properties.

citw
Messages
70
Reaction score
0
Why do polarization mechanisms decrease with frequency in the following order:

Space charge/Interface

Dipole

Ionic

Electronic

See page 3 in the attached document for reference.

Edit: corrected error in wording
 

Attachments

Last edited:
Physics news on Phys.org
I would rather say they decrease in that order!
In general the maximal frequency depends on the inertia of the degrees of freedom. It is clear that an ion can't move as fast as an electron as it is heavier.
A more elaborate argument goes like this: The degrees of freedom have characteristic frequencies at which absorption takes place. For ordinary conduction/ space charges this frequency is zero (Drude), for dipole orientation there is a range of frequencies up to the microwave and finally ionic and electronic transitions occur in the IR and UV part of the spectrum.
Now the real part of the dielectric constant can be obtained from this absorptive part by a Kramers Kronig transformation.
 
DrDu said:
I would rather say they decrease in that order!
In general the maximal frequency depends on the inertia of the degrees of freedom. It is clear that an ion can't move as fast as an electron as it is heavier.
A more elaborate argument goes like this: The degrees of freedom have characteristic frequencies at which absorption takes place. For ordinary conduction/ space charges this frequency is zero (Drude), for dipole orientation there is a range of frequencies up to the microwave and finally ionic and electronic transitions occur in the IR and UV part of the spectrum.
Now the real part of the dielectric constant can be obtained from this absorptive part by a Kramers Kronig transformation.

The lower frequency of interface and dipole polarization, in that order, relative to ionic polarization is what I'm having trouble with. I'm not sure why interfacial polarization occurs at the lowest frequency or why dipole/orientation polarization occurs at a higher frequency than interfacial, but a lower frequency than ionic.
 
Interface polarization is due largely to classical currents of charge which are described by the Drude formula, i.e. a resonance at zero frequency. Dipole orientation is rotational motion of the dipoles which has resonance poles in the microwave/ far IR. "Ionic" polarization refers to the polarization due to optical phonons whose resonance frequency is in the IR.
 
DrDu said:
Interface polarization is due largely to classical currents of charge which are described by the Drude formula, i.e. a resonance at zero frequency. Dipole orientation is rotational motion of the dipoles which has resonance poles in the microwave/ far IR. "Ionic" polarization refers to the polarization due to optical phonons whose resonance frequency is in the IR.

Ok, I think I can figure out the dipole/ionic polarization from here, but I haven't seen anything relating Drude to interface polarization. Do you have any references describing this?
 
No, I have no reference. But as far as I understand, boundary polarization is an effect describable using ordinary macroscopic electrodynamics. So you can write down some equivalent RC networks etc whose characteristic frequencies are very low compared to the other effects mentioned.
Also the characteristic frequency of the conductivity which determines the R is 0, at least in Drude theory.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
810
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K