A Renormalisation of the Fermionic triangle loop

Click For Summary
The discussion focuses on the renormalization of a fermionic triangle loop in the Standard Model using Feynman rules. The amplitude is expressed in terms of loop momenta and fermion mass, leading to a divergent integral after evaluation with dimensional regularization. The divergence is identified through the term involving ##\Delta##, indicating the need for counter-terms to achieve a finite expression. The user seeks guidance on how to properly introduce these counter-terms, referencing standard texts like Srednicki for established methods. The conversation emphasizes the importance of addressing divergences in quantum field theory calculations.
Ramtin123
Messages
22
Reaction score
0
I am trying to renormalise the following loop diagram in the Standard Model:
Fermionic_triangle.png

Using the Feynman rules, we can write the amplitude as follows:
$$ \Gamma_f \sim - tr \int \frac{i}{\displaystyle{\not}\ell -m_f}
\frac{i^2}{(\displaystyle{\not}\ell+ \displaystyle{\not}k -m_f)^2}
\frac{d^4 \ell}{(2 \pi)^4} $$
where ##k## and ##\ell## are external Higgs and loop momenta, and ##m_f## being the fermion mass. I have ignored the coefficients coming from vertex factors.
After evaluating the loop integral functions using dimensional regularisation, I ended up with the following expression:
$$ \Gamma_f \sim \frac{m_f}{4 \pi^2}
\left( 3\Delta -6\ln \frac{m_f}{\mu} +4
-6 \sqrt{1-4x} \ \ln \frac{1 +\sqrt{1-4x}}{2\sqrt{x}} \right)$$
The loop integral is clearly divergent due to ##\Delta \equiv \ln \pi - \gamma_E + 2/\epsilon## term, when ##\epsilon = 4 -d \to 0##.
Here, ##x \equiv (m_f/k)^2##, ##d## is dimension, ##\mu## regularisation scale, and ##\gamma_E## being Euler-Mascheroni constant.
How should I introduce the counter-terms to make the expression for the amplitude finite?
 
Physics news on Phys.org
As always in the books.
Check Srednicki.
 
Thread 'Some confusion with the Binding Energy graph of atoms'
My question is about the following graph: I keep on reading that fusing atoms up until Fe-56 doesn’t cost energy and only releases binding energy. However, I understood that fusing atoms also require energy to overcome the positive charges of the protons. Where does that energy go after fusion? Does it go into the mass of the newly fused atom, escape as heat or is the released binding energy shown in the graph actually the net energy after subtracting the required fusion energy? I...