- #1

- 12

- 0

## Homework Statement

The sine wave [tex] sin(t) [/tex] will only drive the harmonic oscillator [tex] y'' + \omega ^2 y [/tex] into resonance when [tex] \omega = 1 [/tex]. For what values of [tex] \omega [/tex] will the half- and full-wave rectified sine waves drive the harmonic oscillator into resonance.

## Homework Equations

## The Attempt at a Solution

Starting with the half-wave rectified sine wave;

Taking the Laplace transform of both sides and rearranging for Y(s);

[tex] Y(s)= \frac{1+e^{-s\pi}}{(s^2+1)(1-e^{-s2\pi})(s^2+ \omega ^2)} + \frac{sy(0)+y'(0)}{s^2+\omega^2}[/tex]

From here I think I need to find the poles of Y(s) but I am unsure what to do with the [tex] (1-e^{-s2\pi}) [/tex] in the denominator of the first term. Similar problem when looking at the full-wave rectified sine curve.