- #1

HalcyonicBlues

- 7

- 0

~

Given that the equation for estimating the fundamental frequency of a string (like for a guitar or piano) is along the lines of:

f= [√(T/[m/L])]/2L

So it involves tension, mass and length.

But how about the resonant frequency calculation for a solid that isn't stretched over anything and so...has 'no' tension?

*(In this instance, an object like a ruler 'twanged' on the edge of a desk)*.

## The Attempt at a Solution

I thought of comparing it to a spring, because although the wave motion is often demonstrated as longitudinal and not transverse, a spring doesn't necessarily have any initial tension applied. Then that would involve spring constants and angular frequency... Is such a comparison appropriate at all?

Some other places I read suggested using stiffness (ie. Young's modulus):

f = √([stiffness/m]/2∏)

The problem I have with this is when I have other equations I want to use (to calculate inharmonicty - but that's a different story) that include both stiffness and tension as variables. And I don't think that just sticking '0' into the tension field would really work...?

Hannah x