Reverse engineering formulas for directing a plane wave

Click For Summary
The discussion focuses on the relationship between spherical and Cartesian coordinates in modeling plane wave propagation, specifically regarding the propagation normal and electric field vector. It explains that the propagation direction of a spherical wave is radially outward, with the normal vector being perpendicular to the wavefront. The electric field (E-field) vector lies in the plane perpendicular to this normal, allowing for infinite directional possibilities. The choice of a specific E-field direction is arbitrary, as long as it remains perpendicular to the propagation direction. Ultimately, the discussion emphasizes the necessity of making a choice for practical applications in simulations.
yefj
Messages
58
Reaction score
2
Homework Statement
plane wave
Relevant Equations
plane wave
Hello,There is a model which tunes a plane wave using certain expressions which resembles the spherical to cartesian coordinates.
There are two types of definitions:
propogation normal and electric field vector.
Why they put in propogation normal exactly the spherical to cartesian to represent propogation normal?
What is the link between propogation normal and E-field formulas?
Thanks.
1736620393551.png


1736620210292.png

1736620285342.png
 
Physics news on Phys.org
yefj said:
Why they put in propogation normal exactly the spherical to cartesian to represent propogation normal?
It looks like you have a spherical wave. The direction of propagation is radially out and a wavefront is a sphere of radius ##R##. This means that the direction of propagation at any point on the sphere is radially out, i.e. normal to the surface. A unit vector normal to the surface of a sphere is $$\mathbf{\hat n}=\sin\!\theta\cos\!\phi~\mathbf{\hat x} +\sin\!\theta\sin\!\phi~\mathbf{\hat y}+\cos\!\theta~\mathbf{\hat z}$$ which is the same as the radial unit vector ##\mathbf{\hat r}## along which the wave propagates.
 
how does E-field formulas were derived from the normal?
Thanks.
1736704647233.png
 
yefj said:
how does E-field formulas were derived from the normal?
Thanks.
View attachment 355731
The E-field vector is in the plane perpendicular to the normal. In that plane there is an infinity of directions that the E-field vector can have. Here you are given one of many. You can verify that this is a valid E-field by showing that ##~\mathbf E\cdot \mathbf{\hat n}=0.##

For a given normal you can get all the possible electric fields by varying angle ##\alpha## which rotates the electric field in the plane perpendicular to the normal. You can easily see how this works for specific choices of the angles.

For example, if I choose ##\theta=\dfrac{\pi}{2}## and ##\phi=0##, I get
(a)##~~\mathbf{\hat n}= \mathbf{\hat x}##,
(b)##~~\mathbf{\hat E}= \sin\!\alpha~\mathbf{\hat y}-\cos\!\alpha~\mathbf{\hat z}##
The above says that (a) the normal is along the ##x##-axis and (b) a unit vector in the direction of the electric field is in the ##yz##-plane and changes direction as ##\alpha## changes.
 
Hello Kuruman, I understand that E-field can have endless options.
What is the logic for choosing the expression for e-field?
Thanks.
 
yefj said:
Hello Kuruman, I understand that E-field can have endless options.
What is the logic for choosing the expression for e-field?
Thanks.
If you understand that the E-field has infinitely many options and that it must be perpendicular to the direction of propagation, there is no logic for choosing a particular direction as opposed to another. Pick a direction and move on with your life. That's what the person that made the simulation that you posted most probably did understanding that it is necessary to make a choice before drawing the surface, the normal and the E-field.
 
So is there some elegant way to do this or am I just supposed to follow my nose and sub the Taylor expansions for terms in the two boost matrices under the assumption ##v,w\ll 1##, then do three ugly matrix multiplications and get some horrifying kludge for ##R## and show that the product of ##R## and its transpose is the identity matrix with det(R)=1? Without loss of generality I made ##\mathbf{v}## point along the x-axis and since ##\mathbf{v}\cdot\mathbf{w} = 0## I set ##w_1 = 0## to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 3 ·
Replies
3
Views
8K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
11
Views
983