- #1
CAF123
Gold Member
- 2,948
- 88
Consider an equation, $$\tilde{x_0}
= \ln(X+ i\delta),$$ where X may be positive or negative and ##0< \delta \ll 1##. Now, if ##X>0## this evaluates to ##\ln(X)## in some limiting prescription for ##\delta \rightarrow 0## while if ##X<0##, we get ##\ln(-X) + i \pi. ##
Now, consider, $$\tilde{x_0} = 1-\sqrt{X+i \delta}.$$ How may I write this in the form ##a + i \delta##, where a is real?
= \ln(X+ i\delta),$$ where X may be positive or negative and ##0< \delta \ll 1##. Now, if ##X>0## this evaluates to ##\ln(X)## in some limiting prescription for ##\delta \rightarrow 0## while if ##X<0##, we get ##\ln(-X) + i \pi. ##
Now, consider, $$\tilde{x_0} = 1-\sqrt{X+i \delta}.$$ How may I write this in the form ##a + i \delta##, where a is real?