Rewriting Feynman amplitudes and the Dirac equation

Click For Summary
SUMMARY

This discussion focuses on the derivation of specific equations related to Feynman amplitudes and the Dirac equation as presented in the second edition of "Quantum Field Theory" by Mandl & Shaw. The key equations under scrutiny are derived from the anticommutation relations of Dirac matrices and the properties of photon polarization vectors. The user seeks clarification on how to correctly derive equations (4) and (6) involving the Dirac equation and Feynman amplitudes, specifically addressing the negative sign in the equations and the simplifications of the amplitudes.

PREREQUISITES
  • Understanding of Quantum Field Theory (QFT) principles
  • Familiarity with the Dirac equation and its implications
  • Knowledge of Feynman amplitudes and their calculations
  • Proficiency in manipulating Dirac matrices and anticommutation relations
NEXT STEPS
  • Study the derivation of the Dirac equation and its applications in particle physics
  • Learn about the properties of Feynman amplitudes in quantum electrodynamics (QED)
  • Explore the implications of the anticommutation relations of Dirac matrices
  • Review the polarization sum process for photons in quantum field theory
USEFUL FOR

Physicists, particularly those specializing in quantum field theory, particle physicists, and students seeking to deepen their understanding of Feynman amplitudes and the Dirac equation.

JD_PM
Messages
1,125
Reaction score
156
TL;DR
I want to understand how to get the named equations below from Mandl & Shaw book.
I was studying the photon polarization sum process (second edition QFT Mandl & Shaw,https://ia800108.us.archive.org/32/items/FranzMandlGrahamShawQuantumFieldTheoryWiley2010/Franz%20Mandl%2C%20Graham%20Shaw-Quantum%20Field%20Theory-Wiley%20%282010%29.pdf) and got stuck in how to get certain equations.

We work in a gauge in which the polarization vectors of the external photons are of the form

$$\epsilon = (0, \vec \epsilon), \ \ \ \ \epsilon' = (0, \vec \epsilon') \tag 1$$

The 4 products ##\epsilon k## and ##\epsilon'k'## are

$$\epsilon k=-\vec \epsilon \cdot \vec k =0, \ \ \ \ \epsilon' k'=-\vec \epsilon' \cdot \vec k'=0 \tag 2$$

Let us work in the LAB frame.Then ##p=(m, 0, 0, 0)## Thus we have

$$p \epsilon = p \epsilon'=0 \tag 3$$

Given the anticommutation relation ##\{\gamma^{\alpha}, \gamma^{\beta}\}=2g^{\alpha \beta}## and the Dirac equation ##(\not{\!p}-m)u(\vec p)=0## we get

$$\not{\!p} \not{\!\epsilon}u=-m\not{\!\epsilon} u, \ \ \ \ \not{\!p} \not{\!\epsilon'}\not{\!u}=-m\not{\!\epsilon'} u \tag 4$$

Given the Feynman Amplitude ##\mathscr{M}=\mathscr{M}_a+\mathscr{M}_b##, where

$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon'} (\not{\!p}+\not{\!k}+m) \not{\!\epsilon} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = i e^2 \frac{\bar u' \not{\!\epsilon} (\not{\!p}-\not{\!k'}+m) \not{\!\epsilon'} u}{2(pk')} \tag 5$$

##\mathscr{M}_a## and ##\mathscr{M}_b## simplify to

$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk')} \tag 6$$

My questions are:

1) How to get Eqs ##(4)##

I almost get ##\not{\!p} \not{\!\epsilon}u=-m\not{\!\epsilon} u##; based on the Dirac equation we get ##\not{\!p}u(\vec p)=mu(\vec p)##, so we simply multiply by ##\not{\!\epsilon'}## (on the left side of the equation). However, note I do not get the negative sign.

How to get ##\not{\!p} \not{\!\epsilon'}\not{\!u}=-m\not{\!\epsilon'} u##? I guess we have to use ##\{\gamma^{\alpha}, \gamma^{\beta}\}=2g^{\alpha \beta}##, but how? I mean, all we can get out of the anticommutation relation is that ##\Big(\gamma^0\Big)^2=1## and ##\Big(\gamma^i\Big)^2=-1##, where ##i=1,2,3##.

2) How to get Eqs ##(6)##

Based on ##(1), (2)## and ##(3)## I get ##\not{\!\epsilon'} \not{\!p}=0, \not{\!\epsilon} \not{\!p}=0, \not{\!\epsilon'} m=0, \not{\!\epsilon} m=0##. So I end up getting

$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon'} \not{\!k} \not{\!\epsilon} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk')} \tag 7$$

Note I get the same ##\mathscr{M}_b## but not the same ##\mathscr{M}_a##. Is it a typo on the book or I am wrong?

Any help is appreciated.

PS: I asked thie question https://math.stackexchange.com/questions/3703823/rewriting-feynman-amplitudes-and-the-dirac-equation but got not response.
 
Physics news on Phys.org
JD_PM said:
Summary:: I want to understand how to get the named equations below from Mandl & Shaw book.

I was studying the photon polarization sum process (second edition QFT Mandl & Shaw,https://ia800108.us.archive.org/32/items/FranzMandlGrahamShawQuantumFieldTheoryWiley2010/Franz%20Mandl%2C%20Graham%20Shaw-Quantum%20Field%20Theory-Wiley%20%282010%29.pdf) and got stuck in how to get certain equations.

We work in a gauge in which the polarization vectors of the external photons are of the form

$$\epsilon = (0, \vec \epsilon), \ \ \ \ \epsilon' = (0, \vec \epsilon') \tag 1$$

The 4 products ##\epsilon k## and ##\epsilon'k'## are

$$\epsilon k=-\vec \epsilon \cdot \vec k =0, \ \ \ \ \epsilon' k'=-\vec \epsilon' \cdot \vec k'=0 \tag 2$$

Let us work in the LAB frame.Then ##p=(m, 0, 0, 0)## Thus we have

$$p \epsilon = p \epsilon'=0 \tag 3$$

Given the anticommutation relation ##\{\gamma^{\alpha}, \gamma^{\beta}\}=2g^{\alpha \beta}## and the Dirac equation ##(\not{\!p}-m)u(\vec p)=0## we get

$$\not{\!p} \not{\!\epsilon}u=-m\not{\!\epsilon} u, \ \ \ \ \not{\!p} \not{\!\epsilon'}\not{\!u}=-m\not{\!\epsilon'} u \tag 4$$

Given the Feynman Amplitude ##\mathscr{M}=\mathscr{M}_a+\mathscr{M}_b##, where

$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon'} (\not{\!p}+\not{\!k}+m) \not{\!\epsilon} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = i e^2 \frac{\bar u' \not{\!\epsilon} (\not{\!p}-\not{\!k'}+m) \not{\!\epsilon'} u}{2(pk')} \tag 5$$

##\mathscr{M}_a## and ##\mathscr{M}_b## simplify to

$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk')} \tag 6$$

My questions are:

1) How to get Eqs ##(4)##

I almost get ##\not{\!p} \not{\!\epsilon}u=-m\not{\!\epsilon} u##; based on the Dirac equation we get ##\not{\!p}u(\vec p)=mu(\vec p)##, so we simply multiply by ##\not{\!\epsilon'}## (on the left side of the equation). However, note I do not get the negative sign.

How to get ##\not{\!p} \not{\!\epsilon'}\not{\!u}=-m\not{\!\epsilon'} u##? I guess we have to use ##\{\gamma^{\alpha}, \gamma^{\beta}\}=2g^{\alpha \beta}##, but how? I mean, all we can get out of the anticommutation relation is that ##\Big(\gamma^0\Big)^2=1## and ##\Big(\gamma^i\Big)^2=-1##, where ##i=1,2,3##.

Because of the anticommutation relation of the Dirac matrices, we have for arbitrary four vectors a and b,
##\not{\!a} \not{\!b} = -\not{\!b} \not{\!a} + 2 a \cdot b ##
I will get back to your other questions a bit later.
 
JD_PM said:
Summary:: I want to understand how to get the named equations below from Mandl & Shaw book.

I was studying the photon polarization sum process (second edition QFT Mandl & Shaw,https://ia800108.us.archive.org/32/items/FranzMandlGrahamShawQuantumFieldTheoryWiley2010/Franz%20Mandl%2C%20Graham%20Shaw-Quantum%20Field%20Theory-Wiley%20%282010%29.pdf) and got stuck in how to get certain equations.

We work in a gauge in which the polarization vectors of the external photons are of the form

$$\epsilon = (0, \vec \epsilon), \ \ \ \ \epsilon' = (0, \vec \epsilon') \tag 1$$

The 4 products ##\epsilon k## and ##\epsilon'k'## are

$$\epsilon k=-\vec \epsilon \cdot \vec k =0, \ \ \ \ \epsilon' k'=-\vec \epsilon' \cdot \vec k'=0 \tag 2$$

Let us work in the LAB frame.Then ##p=(m, 0, 0, 0)## Thus we have

$$p \epsilon = p \epsilon'=0 \tag 3$$

Given the anticommutation relation ##\{\gamma^{\alpha}, \gamma^{\beta}\}=2g^{\alpha \beta}## and the Dirac equation ##(\not{\!p}-m)u(\vec p)=0## we get

$$\not{\!p} \not{\!\epsilon}u=-m\not{\!\epsilon} u, \ \ \ \ \not{\!p} \not{\!\epsilon'}\not{\!u}=-m\not{\!\epsilon'} u \tag 4$$

Given the Feynman Amplitude ##\mathscr{M}=\mathscr{M}_a+\mathscr{M}_b##, where

$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon'} (\not{\!p}+\not{\!k}+m) \not{\!\epsilon} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = i e^2 \frac{\bar u' \not{\!\epsilon} (\not{\!p}-\not{\!k'}+m) \not{\!\epsilon'} u}{2(pk')} \tag 5$$

##\mathscr{M}_a## and ##\mathscr{M}_b## simplify to

$$\mathscr{M}_a = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk)}, \ \ \ \ \mathscr{M}_b = -i e^2 \frac{\bar u' \not{\!\epsilon} \not{\!k'} \not{\!\epsilon'} u}{2(pk')} \tag 6$$

My questions are:

1) How to get Eqs ##(4)##

I almost get ##\not{\!p} \not{\!\epsilon}u=-m\not{\!\epsilon} u##; based on the Dirac equation we get ##\not{\!p}u(\vec p)=mu(\vec p)##, so we simply multiply by ##\not{\!\epsilon'}## (on the left side of the equation). However, note I do not get the negative sign.

How to get ##\not{\!p} \not{\!\epsilon'}\not{\!u}=-m\not{\!\epsilon'} u##? I guess we have to use ##\{\gamma^{\alpha}, \gamma^{\beta}\}=2g^{\alpha \beta}##, but how? I mean, all we can get out of the anticommutation relation is that ##\Big(\gamma^0\Big)^2=1## and ##\Big(\gamma^i\Big)^2=-1##, where ##i=1,2,3##.

2) How to get Eqs ##(6)##

Based on ##(1), (2)## and ##(3)## I get ##\not{\!\epsilon'} \not{\!p}=0, \not{\!\epsilon} \not{\!p}=0, \not{\!\epsilon'} m=0, \not{\!\epsilon} m=0##. So I end up getting
These are not correct. For example, ##\not{\!\epsilon} \not{\!p} = - \not{\!\epsilon} \not{\!p} +2 \epsilon \cdot p ## which reduces to ## - \not{\!\epsilon} \not{\!p} ## in your case. Using this to move around the ##\not{\!p}## so that it acts on the spinor, you should recover their result.
 
  • Like
Likes   Reactions: JD_PM

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 13 ·
Replies
13
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K