MHB Riemann integral is zero for certain sets

Click For Summary
If \( E \subset \pi \) is a closed Jordan domain and \( f: E \rightarrow \mathbb{R} \) is Riemann integrable, then the integral \( \int_{E} f(x) dV = 0 \). This is because all points in \( E \) have their last coordinate as zero, leading to the volume element being \( dV = dx_1 \, dx_2 \, ... \, dx_{n-1} \). The Riemann integrability of \( f \) ensures that the lower and upper integrals are equal, confirming that the integral can be expressed in terms of the reduced dimensions. Consequently, since the last coordinate is zero, the integrand effectively becomes zero, resulting in the integral being zero. Thus, the conclusion is that the integral of \( f \) over \( E \) is indeed zero.
i_a_n
Messages
78
Reaction score
0
The question is:Let $\pi=\left \{ x\in\mathbb{R}^n\;|\;x=(x_1,...,x_{n-1}, 0) \right \}$. Prove that if $E\subset\pi$ is a closed Jordan domain, and $f:E\rightarrow\mathbb{R}$ is Riemann integrable, then $\int_{E}f(x)dV=0$.(How to relate the condition it's Riemann integrable to the value is $0$? The textbook I use define $f$ is integrable on $E$ iff $\;\;\;\;(L)\int_{E}fdV=(U)\int_{E}fdV$)
 
Physics news on Phys.org
Answer:Since $E \subset \pi$, we know that $E$ is a set of points with coordinates of the form $(x_1, x_2, ... , x_{n-1}, 0)$. This implies that the last coordinate of any point in $E$ is zero. Therefore, the volume element for this set of points is $dV=dx_1\,dx_2\,...\,dx_{n-1}$.Now, since $f$ is Riemann integrable, we know that $(L)\int_{E}fdV=(U)\int_{E}fdV$ and thus the integral of $f$ over $E$ is equal to the lower bound and upper bound of the integral. Since the last coordinate of any point in $E$ is zero, the integral of $f$ over $E$ can be written as $$\int_{E}f(x)dV=\int_{E}f(x_1,x_2,...,x_{n-1})dx_1\,dx_2\,...\,dx_{n-1}.$$Since the last coordinate of any point in $E$ is zero, we can set the integrand to be zero and the integral becomes$$\int_{E}f(x)dV=0.$$Therefore, we have shown that if $E\subset\pi$ is a closed Jordan domain, and $f:E\rightarrow\mathbb{R}$ is Riemann integrable, then $\int_{E}f(x)dV=0$.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K