MHB Riemanns Sum Problem: Find the exact volume

  • Thread starter Thread starter MathsKid007
  • Start date Start date
  • Tags Tags
    Sum Volume
AI Thread Summary
The discussion focuses on calculating the exact volume of a shape with hexagonal cross-sections using the formula V = ∫[a,b] A(x) dx, where A(x) is the cross-sectional area. The initial calculation for the area A was presented as A = (3√3)/2 s^2, but a correction was suggested to use Pythagoras' theorem, leading to A = (3√3)/2 (r^2 - x^2). The integration should then be performed from x = 0 to x = h using this corrected area function. The final volume expression needs to reflect this adjustment for accuracy. The conversation emphasizes the importance of correctly applying geometric principles in volume calculations.
MathsKid007
Messages
3
Reaction score
0
View attachment 8261

This is what i have so far
We can find the exact volume of any shape using:
V= $$int[a,b] A(x) dx$$
Where,A(x)is the cross-sectional area at height x
and [a,b] is the height interval
We know that the horizontal cross-sections are hexagonal
$$∴A=(3√3)/2 a^2$$
Where a,is the length of a side
Write the side length a,at height x
a= s
$$∴A=(3√3)/2 s^2$$
$$V= int[0,h](3√3)/2 x^2 dx$$
$$V= (3√3)/2 int[0,h]x^2 dx$$
$$= (3√3)/2*x^3/3$$
$$=[(√3 x^3)/2] [0,h]$$
$$V=(√3 h^3)/2$$
Is this correct?
 

Attachments

  • question.PNG
    question.PNG
    16.3 KB · Views: 119
Mathematics news on Phys.org
MathsKid007 said:
This is what i have so far
We can find the exact volume of any shape using:
V= $$int[a,b] A(x) dx$$
Where,A(x)is the cross-sectional area at height x
and [a,b] is the height interval
We know that the horizontal cross-sections are hexagonal
$$∴A=(3√3)/2 a^2$$
Where a,is the length of a side
Write the side length a,at height x
a= s
$$∴A=(3√3)/2 s^2$$
$$V= int[0,h](3√3)/2 x^2 dx$$
$$V= (3√3)/2 int[0,h]x^2 dx$$
$$= (3√3)/2*x^3/3$$
$$=[(√3 x^3)/2] [0,h]$$
$$V=(√3 h^3)/2$$
Is this correct?
Hi MathsKid, and welcome to MHB!

I agree with your solution up to the point $A = \frac{3\sqrt3}2s^2$. But you have gone wrong in the next line, when you form the integral. You need to apply Pythagoras to write $s^2 = r^2 - x^2$, so that $A = \frac{3\sqrt3}2(r^2 - x^2)$. Then you can integrate that from $x=0$ to $x=h$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top