A Rigid body motion (RBM) transformation

AI Thread Summary
The discussion centers on the mechanics of rigid body motion (RBM) transformation involving an elastic body and a rigid body interface. The new position of points at the interface is expressed through a transformation equation that incorporates displacement and rotation. Participants express confusion about the role of a reference point, noting that it is part of the rigid body and should rotate with it, which complicates its use as a fixed reference. The conversation also touches on the implications of applying forces and moments at the interface, emphasizing the relationship between the rigid body and the elastic body. Overall, the complexities of the mathematical modeling and physical interpretations of the system are highlighted.
Mechanics_student
Messages
20
Reaction score
1
TL;DR Summary
Rigid body motion (RBM) transformation of interface points between a rigid and an elastic bodies in contact
68maW.png


ABfVc.png

7FCA8.png


Above are pictures of a problem in mechanics. An elastic body occupying domain ##\Omega## is supported below with a fixed support and from above with a rigid body. The following calculations aim to express the movements of the points located at the interface ##\Gamma_F## between the rigid and elastic bodies in terms of a reference point ##B##:
I don't understand them well, so I will explain my understanding (not sure it's correct), and confusion.
$$\vec{y}(x) = \vec{x} + \vec{u}(x)$$
The new position ##\vec{y}## of a point is equal to its original position ##\vec{x}## plus its displacement ##\vec{u}##.

Rigid body motion transformation:
$$\vec{y}(\vec{x}) = \vec{y}^B + \mathcal{R}(\beta) (\vec{x} - \vec{x}^B)$, where $\vec{x} \in \Gamma_F$$
where ##\mathcal{R}## is the rotation matrix as the rigid body rotates at an angle ##\beta##.
$$\mathcal{R} = \begin{bmatrix}
cos(\beta) & sin(\beta)\\
-sin(\beta) & cos(\beta)
\end{bmatrix}$$
Linearization for small deformation:
$$\vec{u}(x) - \vec{u}^B = \vec{y} - \vec{y}^B - (\vec{x} - \vec{x}^B)\\
= (\mathcal{R}(\beta) - I)(\vec{x}-\vec{x}^B)$$
where ##I## is the identity matrix.
For linearization we take,
$$\mathcal{R} = \begin{bmatrix}
0 & \beta\\
-\beta & 0
\end{bmatrix}$$
$$\Rightarrow \vec{u}(x)\mid_{\Gamma_F} = \vec{u}^B + (\mathcal{R}(\beta) - I)(\vec{x}-\vec{x}^B)$$
I don't understand the displacement of the points on the interface are parametrize by the displacement of a reference point that is also located on the interface undergoing transformation as well.

Isn't a reference point supposed to be fixed?
 
Last edited by a moderator:
Physics news on Phys.org
Welcome, @Mechanics_student ! :cool:

I can't help with that complicated math, but I can tell you that from the point of reference of point B, the only movements that an observer sees are the deformation of the elastic body occupying domain Ω, and the rotation of the fixed support located below it.

You could also assume that two springs located where the green lines are replacing the elastic body.
For ideal conditions, the left side spring will compress the same distance that the left side spring is stretched, and in the same period of time.

I would assume that a point moment applied at a midpoint of the top interface replaces the actual moment created by the force F.
The vertical displacement of that midpoint would be zero, constantly increasing with the distance at which a point of that interface is located at.
 
Lnewqban said:
Welcome, @Mechanics_student ! :cool:

I can't help with that complicated math, but I can tell you that from the point of reference of point B, the only movements that an observer sees are the deformation of the elastic body occupying domain Ω, and the rotation of the fixed support located below it.

You could also assume that two springs located where the green lines are replacing the elastic body.
For ideal conditions, the left side spring will compress the same distance that the left side spring is stretched, and in the same period of time.

I would assume that a point moment applied at a midpoint of the top interface replaces the actual moment created by the force F.
The vertical displacement of that midpoint would be zero, constantly increasing with the distance at which a point of that interface is located at.
Hi Lnewqban, thanks I'm glad you to be here. The thing is, point B is part of the rigid body, and so when the rigid body rotates, I assume that it rotates as well. That's why I don't understand why its taken as a reference. Another thing is that, the fixed support doesn't rotate, because it is fixed. So the upper interface of the elastic body is in contact and rotates exactly like the rigid body, and the lower interface of the elastic body in contact with the fixed support, doesn't undergo any displacements.
 
Mechanics_student said:
Hi Lnewqban, thanks I'm glad you to be here. The thing is, point B is part of the rigid body, and so when the rigid body rotates, I assume that it rotates as well....
That could be, but in that case, force F should have been represented as being perpendicular to the top interface for any angle.
It has been represented as not solidly linked to point B, rather than rotating respect to it (case of F being applied on a shaft that rotates inside bushing B).

The other option could be that reference point B is part of the shaft rather than a fixed point of the top interface or rigid body.

Again, this is over my head, and I am only responding because nobody else with much better understanding of Math has.

I have found this article, which you may find helpful:
https://ucb-ee106.github.io/ee106a_jupyterbook/ForwardKinematics.html

revoluteJoint.png
 
  • Like
Likes Mechanics_student
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top