MHB Ring of integer p-adic numbers.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! (Wave)

Let the ring of the integer $p$-adic numbers $\mathbb{Z}_p$.

Could you explain me the following sentences? (Worried)

  1. It is a principal ideal domain.
    $$$$
  2. The function $\epsilon_p: \mathbb{Z} \to \mathbb{Z}_p$ is an embedding.
    (So, $\mathbb{Z}$ is considered $\subseteq \mathbb{Z}_p$)
    $$$$
  3. The units of the ring $\mathbb{Z}_p$:

    $$\mathbb{Z}^*=\mathbb{Z} \setminus p \mathbb{Z}$$

    so the units are

    $$= \{ \sum_{n=0}^{\infty} a_n p^n | a_0 \neq 0\}$$
  4. Each element $x$ of $\mathbb{Z}_p \setminus \{ 0 \}$ has a unique expression of the form $x=p^m u | m \in \mathbb{N}_0$
  5. $\mathbb{Z}_p$ has exactly these ideals:

    $$0, p^n \mathbb{Z}_p (n \in \mathbb{N}_0)$$

    Furthermore, $\cap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_0=\{0\}$ and $\frac{\mathbb{Z}_p}{p^n \mathbb{Z}_p} \cong \frac{\mathbb{Z}}{p^n \mathbb{Z}}$

    Last but not least, the unique maximal ideal of $\mathbb{Z}_p$ is $p \mathbb{Z}_p$.
 
Mathematics news on Phys.org
  1. Let $\mathfrak{p}$ be a nonzero ideal of $\mathbf{Z}_p$, and a nonzero $x \in \mathfrak{p}$ such that $\nu_p(x) < \infty$ is the smallest order in all of $\mathfrak{p}$. $x = p^{\nu_p(x)} a$ by definition of the valuation, implying $p^{\nu_p(x)} = a^{-1} x$. As the LHS is in $\mathfrak{p}$, $p^{\nu_p(x)} \in \mathfrak{p}$, indicating that $\left \langle p^{\nu_p(x)}\right \rangle$ is sitting inside $\mathfrak{p}$. But then any integer $y$ can be written as $y = p^{\nu_p(y)} a$, and assuming $\nu_p(y) \geq \nu_p(x)$, $y = p^{\nu_p(x)} \cdot (p^{\nu_p(y) - \nu_p(x)} a) \in \left \langle p^{\nu_p(x)} \right \rangle$. Hence $\mathfrak{p}$ sits inside $\left \langle p^{\nu_p(x)} \right \rangle$ in turn, but this is only possible if $\mathfrak{p} = \left \langle p^{\nu_p(x)} \right \rangle = p^{\nu_p(x)} \Bbb Z$, and we prove the first part of $\#5$ more generally. This implies that all of the ideals are principal, hence $\mathbf{Z}_p$ is a PID.
  2. What is your $\epsilon_p$? It's obvious that $\mathbf{Z}_p$ has a copy of $\mathbb{Z}$ sitting inside : take the infinite-tuple $(x_1, x_2, x_3, \cdots)$ where $x_i = n \pmod{p^i}$, $n$ being your given integer.
  3. Left as an exercise.
  4. This is straightforward from $\#4$. $x$ have the $p$-adic representation $$x = \sum_{k \geq \nu_p(x)} a_k p^k = p^{\nu_p(x)} \sum_{k \geq 0} a_k p^k$$ The sum there is a unit from exercise $\#4$, so you have the desired.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
Back
Top