RLC Series Circuit Analysis: Questions and Answers

Click For Summary
In a linear RLC series circuit, the analysis differs significantly between an uncharged capacitor at time t=0 and a charged capacitor introduced into the circuit. When the switch is closed with an uncharged capacitor, Laplace transforms can be applied straightforwardly using Kirchhoff's voltage law. However, inserting a charged capacitor alters the system dynamics, requiring a different approach for the Laplace transform, particularly in how the capacitor's initial voltage is treated. The correct representation involves using the capacitor's impedance and accounting for its initial charge, which affects the signs in the equations. Understanding these nuances is crucial for accurate circuit analysis and solving for time-domain solutions post-switching.
FOIWATER
Gold Member
Messages
434
Reaction score
12
Just a quick question for you people - If I have a linear RLC series circuit where there is an uncharged capacitor at time t=0, and the switch is closed, is it an entirely different analysis (in terms of laplace transforms) than If, say, the some battery charges a capacitor, then I put it into the circuit without any external voltage source?

I Have been analyzing these circuits and getting correct answers.

I use kirchhoffs voltage law, when I have a resistor I use v(t)=Ri(t) and transform it to V(s) = rI(s) , the voltage drop across the inductor Ldi/di as L(SI(s)-i(0)) and the voltage drop across the capacitor (uncharged scenerio) as 1/c integral i(t)dt transforms to (I(s)/SC + v(0)/S) once I solve for the volt drop. I re arrange 1/c integral i(t)dt to i(t) = Cdv(t)/dt and transform it and solve for V(s).

Now I make an equation as V(s)/S = RI(s) + L(SI(s)-i(0) + (I(s)/SC + v(0)/S) and this has been working for these circuits.

However, there is a scenerio my professor has given us where the charged capacitor is inserted. No longer I can use this transform for the capacitor certainly? I get similar answers but signs incorrect. It is as if I must use (I(s)/SC - v(0)/S), not plus. My professor showed me I can represent the capacitor, and inductor, as two components with their own transform. For example, the capacitor impedance represented as 1/SC in complex frequency domain, and in series with v(0)/S and it makes sense to me that if the capacitor is now charged and thus supplying power as opposes to consuming it, the transform I initially stated for the capacitor cannot be correct. However his methods seem to contradict each other, its friday and I cannot wait for the class to pick back up I need to know.

Any information appreciated greatly.
 
Engineering news on Phys.org
The Laplace transforms describe a system, and the external stimulus to the system. Your problem is that you are changing the system, by switching in a capacitor. Be sure to write equations only for the post switching time.

The time domain solutions will contain an arbitrary constant of integration. You can solve for the value of that constant that also matches the initial charge on the capacitor.
 
I am trying to understand how transferring electric from the powerplant to my house is more effective using high voltage. The suggested explanation that the current is equal to the power supply divided by the voltage, and hence higher voltage leads to lower current and as a result to a lower power loss on the conductives is very confusing me. I know that the current is determined by the voltage and the resistance, and not by a power capability - which defines a limit to the allowable...

Similar threads

  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
44
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K