I Robertson uncertainty relation for the angular momentum components

Yan Campo
Messages
2
Reaction score
0
TL;DR Summary
I would like any explanation about Robertson the uncertainty relation for the angular momentum components and compatibility between the components
I'm studying orbital angular momentum in the quantum domain, and I've come up with the Robertson uncertainty relation for the components of orbital angular momentum. Therefore, I read that it is necessary to pay attention to the triviality problem, because in the case where the commutator is zero, the product of the standard deviations is zero, so the variance is also zero. This means that we don't have information about one of the observables and, therefore, we don't know the incompatibility between the two, I think. But, I can't see any kind of problem in using the Robertson uncertainty relation in the orbital angular momentum components. Can anyone explain to me, or give me an example about this? I really want to understand.
 
Physics news on Phys.org
I am afraid there is no angle operator such that
[\hat{\theta},\hat{L}]=i\hbar
to which we apply Roberson uncertainty relation.
 
Last edited:
Yan, the Robertson uncertainty principle is regarding two operator have a common complete set of eigenfunctions, i.e., in such basis both operators are diagonal. This is usually expressed, for example, as

$$\Delta A\Delta B \geq \frac{1}{2}\left | \int \psi^{*}[A,B]\psi d\tau\right |$$

But, in the case of angular momentum components, it does not mean that some of the eigenfunctions of ##L_{z}## cannot also be simultaneous eigenfunctions of ##L_{x}## and ##L_{y}##. See the case of ##Y_{0}^{0}(\theta,\phi)## spherical harmonic. In such case, it is allowed to have ##\Delta L_{x} = 0##, ##\Delta L_{y} = 0## and ##\Delta L_{z} = 0##.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top