- #1

- 32

- 0

## Homework Statement

Show that on a roller coaster with a circular vertical loop, the difference in your apparent weight at the top of the circular loop and the bottom of the loop is 6 g's--that is six times your weight. Ignore friction. Show also that as long as your speed is above the minimum needed, this answer doesn't depend on the size of the loop or how fast you go through it.

## Homework Equations

PE(1)+KE(1)=PE(2)+KE(2)

F=ma

## The Attempt at a Solution

I'm not really sure what it is that they are asking me to solve for. I set up my problem from the the bottom of the loop. The bottom of the loop is 1 and the top of the loop is 2.

KE(1)=PE(2)+KE(2)

.5mv

^{2}=2mgr+.5mv

^{2}.

The mass cancels out but I don't know how to prove that at the top of the loop a persons weight at the top of the loop is 6x greater.

Things I tried

.5mv^2=12mgr+3mv^2

2.5mv^2=12mgr

2.5v^2=12gr

I gave up on that because I really didn't see how it was useful for what I needed to find. Can someone help me please?