MHB Roots of a polynomial with non-real coefficients.

AI Thread Summary
For the polynomial equation z^4 + az^3 + bz^2 + cz + d = 0 with all roots on the unit circle, the sum of the reciprocals of the roots is determined to be -c. The roots, represented as conjugate pairs, maintain a magnitude of 1, allowing for simplifications using Vieta's formulas. The calculations confirm that the product of the roots equals d, which is 1 in this case. Thus, the correct answer to the original question is option c) -c. This conclusion highlights the relationship between the roots' properties and their coefficients in polynomial equations.
juantheron
Messages
243
Reaction score
1
Let a,b,c,d be real numbers. Sauppose that all the roots of the equation $z^4 + az^3 + bz^2 + cz + d = 0$ are complex numbers

lying on the circle $\mid z\mid = 1$ in the complex plane. The sum of the reciprocals of the roots is necessarily:


options

a) a
b) b
c) -c
d) d


---------- Post added at 22:03 ---------- Previous post was at 21:31 ----------

Thanks Friends I have Got it

Let $\alpha\;,\beta\;,\gamma\;,\delta$ be the roots of Given EquationNow all Roots are Imaginary and lie on $\mid z\mid = 1$and Imaginary Roots are always occur in pair so Let $\alpha = x_{1}+iy_{1}\;\;\beta = x_{1}-iy_{1}$ and $ \alpha.\beta = x^2_{1}+y^2_{1} = 1$ Similarly $ \gamma = x_{2}+iy_{2}\;\;\delta = x_{2}-iy_{2}$ ] and $ \gamma.\delta = x^2_{2}+y^2_{2} = 1$ Now Using Vieta, s Formula$ \alpha+\beta+\gamma+\delta = -a$ $ \alpha.\beta.\gamma+\beta.\gamma.\delta+\gamma \delta.\alpha+\delta.\alpha.\beta = -c$ $ \alpha.\beta.\gamma.\delta = d$ So $\displaystyle \frac{\alpha.\beta.\gamma+\beta.\gamma \delta+\gamma.\delta.\alpha+\delta.\alpha.\beta}{\alpha \beta.\gamma.\delta} = -\frac{c}{d} = - c$So $ \displaystyle \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta} = -c$ because $ \alpha.\beta.\gamma.\delta = d=1$
 
Last edited:
Mathematics news on Phys.org
So Option $ \boxed{\boxed{c}} $ is Correct
I would like to provide a more detailed explanation for why the answer is option c) -c.

Firstly, let's define the four roots of the given equation as $\alpha, \beta, \gamma, \delta$. Since the equation has all complex roots, we know that they will exist in conjugate pairs, i.e. $\alpha$ and $\beta$ will be conjugates, and $\gamma$ and $\delta$ will be conjugates.

Now, we know that the roots of the equation lie on the circle $|z| = 1$ in the complex plane. This means that all the roots will have a magnitude of 1, and therefore can be represented in polar form as $e^{i\theta}$, where $\theta$ is the argument of the root.

Since the roots exist in conjugate pairs, we can write them as $e^{i\theta}$ and $e^{-i\theta}$. Now, using Euler's formula, we can expand these roots as $\cos\theta + i\sin\theta$ and $\cos\theta - i\sin\theta$, respectively.

Next, let's look at the sum of the reciprocals of the roots. This can be written as $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$. Using the expanded forms of the roots, we can simplify this expression as $\frac{\cos\theta - i\sin\theta}{\cos\theta + i\sin\theta} + \frac{\cos\theta + i\sin\theta}{\cos\theta - i\sin\theta} + \frac{\cos\theta - i\sin\theta}{\cos\theta + i\sin\theta} + \frac{\cos\theta + i\sin\theta}{\cos\theta - i\sin\theta}$.

Now, using the formula for complex conjugates, we can simplify this expression even further to $\frac{\cos^2\theta + \sin^2\theta}{\cos^2\theta + \sin^2\theta} = 1$. Therefore, the sum of the reciprocals of the roots is simply 1.

Finally, using Vieta's formulas, we
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top