Rotate a plane through its coefficients

Click For Summary
SUMMARY

The discussion focuses on rotating a plane defined by the equation ax + by + cz = d using Euler angles (alpha, beta, gamma). The initial approach involves parametrizing the plane and applying rotation transformations to the coordinates. However, a more efficient method is proposed, which directly substitutes the rotation into the plane equation, yielding new coefficients a', b', and c' for the rotated plane. The consensus is that both methods can achieve the desired outcome, but the direct substitution method is simpler and avoids unnecessary parametrization.

PREREQUISITES
  • Understanding of plane equations in 3D space
  • Familiarity with Euler angles and rotation matrices
  • Knowledge of vector operations, particularly cross products
  • Basic algebra for rearranging equations
NEXT STEPS
  • Study the derivation of rotation matrices for 3D transformations
  • Learn about the implications of rotating normal vectors in geometric contexts
  • Explore the use of homogeneous coordinates for transformations
  • Investigate the application of rotation in computer graphics and simulations
USEFUL FOR

Mathematicians, computer graphics developers, and anyone involved in 3D modeling or simulations requiring plane rotations and transformations.

TheDestroyer
Messages
401
Reaction score
1
Hello mathematicians,

I'm creating a program and I need in this program to rotate some planes around the origin, while I'm given the coefficients a,b,c and d for this plane, they represent a plane of the form:

a x + b y + c z = d

So these coefficients are given and I want to rotate the plane with Euler angles (alpha, beta and gamma).

What I tried is the following:
As a first step, I need to parametrise this plane, to do that I casted this simple parametrisation:

x = u,
y = v,
z = (d - a u - b v)/c

So now to apply the rotation I just have to use the rotation group, as follows:

x' = u cos(alpha) + v sin(alpha),
y' = -u sin(alpha) + v cos(alpha),
z' = z,

where x',y',z' are the rotated coordinates.

Now the problem appears here. How will I restore this form as coefficients a,b,c and d to be in the first formulation ax'+by'+cz'=d? In other words how will I cancel the parametrisation?

Have I chosen the shortest path? is there a smarter way to do this?

Any effort is highly appreciated,

Thank you
 
Physics news on Phys.org
Of course you will need to do your rotation for all three Euler angles.

TheDestroyer said:
Now the problem appears here. How will I restore this form as coefficients a,b,c and d to be in the first formulation ax'+by'+cz'=d? In other words how will I cancel the parametrisation?
To do this you can use
\vec{x}=u\vec{a}+v\vec{b}+\vec{c}
and multiply out
\therefore \vec{n}\cdot\vec{x}=\vec{n}\cdot\vec{c}
where the normal vector
\vec{n}=\vec{a}\times\vec{b}
is the cross product.

However I would recommend a simpler approach:
Just rotate the vector (a,b,c) (which is the normal vector) to get new coefficients (a',b',c'). Check it, but I believe this should work. For rotations about the origin, the value of d should be unchanged
 
Thank you so much for your answer :)

Actually I apparently have found a very simple way, but maybe you could tell me whether it's right, because it seems trivial somehow!

The method is to substitute the rotations directly in the plane equation without parametrising, so to do the first rotation for example:

ax+by+cz=d ->
a(x cos(alpha) + y sin(alpha)) + b(-x sin(alpha) + y cos(alpha)) + cz = d

where I did the substitution:
x -> x cos(alpha) + y sin(alpha)
y -> -x sin(alpha) + y cos(alpha)

Now after this, I rearrange the equation again to restore the original form a'x+b'y+c'z=d, and the result is:

a' = a cos(alpha) - b sin(alpha)
b' = a sin(alpha) + b cos(alpha)
c' = c

where a', b' and c' are the coefficients for the rotated plane.

Actually I plotted both planes and I found a rotation around the z axis :D... What do you think? is this right? maybe there's something I can't visualise ;)

Thank you again!
 
I guess it's correct. It probably just depends what someone finds easier to visualize. In my method you'd directly use your final equation since I know that (a,b,c) is the normal vector of the plane.

Of course in the end you need to do you the one angle rotation for all three Euler angles. Make sure you rotate around the correct axis in the correct order ;)
 
Thanks :)
 
Hi,

I'm a little confused. After all, which one is the solution? The "TheDestroyer" one? Or rotating (a,b,c) - the Gerenuk's one? Or...are they basically the same?

Kind regards,

CPtolemy
 
Last edited:

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K