Rotational Volume Using Shell Method

Click For Summary
The discussion centers on using the shell method to calculate the volume of a solid generated by revolving the region defined by y = 4 - x² and y = 0 around the y-axis. A common misunderstanding arises when evaluating the integral from -2 to 2, which results in zero due to the symmetry of the function, as positive and negative areas cancel each other out. The correct approach is to integrate from 0 to 2 and then multiply the result by 2 to account for the entire volume. This highlights the importance of recognizing the symmetry in the problem when applying the shell method. Proper limits of integration are crucial for obtaining the correct volume.
Michele Nunes
Messages
42
Reaction score
2

Homework Statement


Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the y-axis.
y = 4 - x2
y = 0

Homework Equations

The Attempt at a Solution


Okay I understand that the region is symmetric about the y-axis, however I still don't understand why the integral 2π∫[from -2 to 2] (4x-x3)dx comes out to be 0 when I plug it into my calculator. I know that you can just do the integral from 0 to 2 and then multiply the whole thing by 2 and it comes out correctly but why does doing it from -2 to 2 come out as 0? Aren't both methods trying to calculate the same thing? Why do both get different answers? Wouldn't rotating just the region from 0 to 2 about the y-axis and rotating the region from -2 to 2 about the y-axis give you the same cylindrical solid?
 
Physics news on Phys.org
Michele Nunes said:

Homework Statement


Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the y-axis.
y = 4 - x2
y = 0

Homework Equations

The Attempt at a Solution


Okay I understand that the region is symmetric about the y-axis, however I still don't understand why the integral 2π∫[from -2 to 2] (4x-x3)dx comes out to be 0 when I plug it into my calculator. I know that you can just do the integral from 0 to 2 and then multiply the whole thing by 2 and it comes out correctly but why does doing it from -2 to 2 come out as 0? Aren't both methods trying to calculate the same thing? Why do both get different answers? Wouldn't rotating just the region from 0 to 2 about the y-axis and rotating the region from -2 to 2 about the y-axis give you the same cylindrical solid?
You get the wrong answer for the volume using

$$V=\int_{-2}^2(4-x^2) ⋅ xdx$$

because you have applied the shell method incorrectly. Since the region y = 4x - x2 is symmetrical about the axis of rotation, in this case the y-axis, you should have made the lower limit of integration a = 0 instead of a = -2.

http://tutorial.math.lamar.edu/Classes/CalcI/VolumeWithCylinder.aspx
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K