Can Trigonometric Identities Simplify Row Reduction Problems?

Click For Summary
The discussion focuses on using trigonometric identities to simplify a row reduction problem involving equations with trigonometric functions. The user initially struggles with row reducing a matrix and questions whether multiplying by a function, such as cosine, is permissible. A response clarifies that multiplying by functions is allowed, provided to avoid values that make the function zero. The suggested method involves standard row reduction techniques and applying trigonometric identities, such as sin²(t) + cos²(t) = 1, to simplify the equations further. Ultimately, the conversation emphasizes the importance of algebraic manipulation before expecting to see trigonometric identities emerge.
EV33
Messages
192
Reaction score
0

Homework Statement



I am having trouble row reducing...

5cos(t) 5sin(t) | -cos(t)

2cos(t)+sin(t) 2sin(t)-cos(t) | sin(t)






Homework Equations





The Attempt at a Solution



I know I am allowed to multiply a row by a constant but I was wondering if I am allowed to multiply by a function?

I have row reduced it to

5cos(t) 5sin(t)|-cos(t)
sin(t) -cos(t)|sin(t)+(2/5)cos(t)

I was unable to reduce this any further so I tried solving the first equation for x1 and then plugging it into the second equation but it didn't come out pretty.

So I am curious if there are any trig identities which would make this problem easier?

Any help would be much appreciated. Thank you.
 
Physics news on Phys.org
"Cosine" is a function. "Cos(t)" is a number- the value of the cosine function at the number, t. So, yes, you can multiply by such a thing or divide by it if you are careful about values of t that make that number 0.

Here, I would row reduce that in the "standard" way. Since the first row of the first column is "5 cos(t)", divided entire first row by it to make that entry "1". The first row becomes:
\left[\begin{array}{cc}1 & \frac{sin(t)}{cos(t)}\end{array}\right| -\frac{1}{5}\right]
Now, to change that "sin(t)" in the second row of the first column to "0", subtract sin(t) times the new first row from that second row. The number in the second column of the second row becomes
-cos(t)- sin(t)\frac{sin(t)}{cos(t)}= -cos- \frac{sin^2(t)}{cos(t)}= \frac{-cos^2(t)- sin^2(t)}{cos(t)}
and we certainly can use a "trig identity": sin^2(xt)+ cos^2(t)= 1
to get
-\frac{1}{cos(t)}
(moral- you can't expect to see trig identities from the start- go ahead, do the algebra and they will come!)

For the third column, then, we will need to subtract (-1/5) times sin(t) from sin(t)+ (2/5)cos(t): sin(t)+ (2/5)cos(t)+ (1/5)sin(t)= (4/5)sin(t)+ (6/5)sin(t)+ (2/5)cos(t) so that after reducing the first column you have
\left[\begin{array}{cc}1 & \frac{sin(t)}{cos(t)} \\ 0 & \frac{1}{cos(t)}\end{array}\right|\left|\begin{array}{c}-\frac{1}{5} \\ \frac{6}{5}sin(t)+ \frac{2}{5}cos(t)\end{array}\right]=\left[\begin{array}{cc}1 & tan(t) \\ 0 & sec(t)\end{array}\right|\left|\begin{array}{c}-\frac{1}{5} \\ \frac{6}{5}sin(t)+ \frac{2}{5}cos(t)\end{array}\right]
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
4
Views
2K
Replies
9
Views
2K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K