MHB RSA Explained: Intro for Layman, Number Theory Basics

  • Thread starter Thread starter matqkks
  • Start date Start date
  • Tags Tags
    Layman
Click For Summary
The RSA algorithm encrypts numbers using a public key and decrypts them with a private key, relying on the difficulty of factoring the product of two large prime numbers, n = pq. The encryption process is represented as the encrypted number being equal to m raised to the power of the public key modulo n. Decryption reverses this process using the private key. Resources like Wikipedia provide a foundational understanding, detailing how to generate the public and private key pair from primes p and q. The discussion emphasizes the importance of modular arithmetic and suggests exploring the Chinese remainder theorem for further insight.
matqkks
Messages
280
Reaction score
5
I am looking for any resources which explain the RSA algorithm for the layman. I have found a number of sources but they all tend to end with a morass of technical details. This is for a first year undergraduate course in number theory who have covered some basic work on modular arithmetic.
 
Mathematics news on Phys.org
matqkks said:
I am looking for any resources which explain the RSA algorithm for the layman. I have found a number of sources but they all tend to end with a morass of technical details. This is for a first year undergraduate course in number theory who have covered some basic work on modular arithmetic.

Hi matqkks,

It seems to me the explanation here is about as simple as it gets.Long story short, we encrypt numbers $m$ with the public key as:
$$\text{encrypted number} = m^{\text{public key}} \bmod n$$
and we decrypt them with the private key:
$$m = \text{encrypted number}^{\text{private key}} \bmod n$$
where $n = pq$ is the product of 2 large prime numbers.The schema hinges on the fact that it's very difficult to find $p$ and $q$ given $n$.
The article explains how to get a $(\text{public key}, \text{private key})$ pair given $p$ and $q$.
It also means that anyone can encrypt a message, but only someone with access to the $\text{private key}$ can decrypt a message.
 
I agree completely with the previous post. You should read the Wikipedia article. Using the notation there, given an integer x, the encoded x is $x^e\text{ mod}(n)$ The decoding $f$ is such that $ef\equiv1\text{ mod}(\phi(n))$ Then for $x$ prime to $n$, $x^{ef}\equiv x\text{ mod}(n)$. However, it should still work for x's not prime to n. You might try your hand at this. Hint: the Chinese remainder theorem is helpful.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K