I S is set of all vectors of form (x,y,z) such that x=y or x =z. Basis?

Hall
Messages
351
Reaction score
87
##S## is a set of all vectors of form ##(x,y,z)## such that ##x=y## or ##x=z##. Can ##S## have a basis?

S contains either ##(x,x,z)## type of elements or ##(x,y,x)## type of elements.

Case 1: ## (x,x,z)= x(1,1,0)+z(0,0,1)##
Hencr, the basis for case 1 is ##A = \{(1,1,0), (0,0,1)##\}

And similarly for case 2 the basis would be ##A'= \{ (1,0,1), (0,1,0)\} ##.

But how to find the basis for ##S##? A union of A and A' would give us a set whose linear span would go beyond S and hence cannot be a basis for S. Can S have a basis? How do we find it?
 
Physics news on Phys.org
:welcome:

Perhaps you should check whether ##S## is a vector (sub-) space?
 
PeroK said:
:welcome:

Perhaps you should check whether ##S## is a vector (sub-) space?
##(x,x,z)##, ##(x,y,x)## ##\in S##

## (2x, x+y, x+z)## is not in S. S is not a subspace.

Oh yes, thanks.
 
I think that's 95% of a proof, but if you want to be very technical, you should prove the thing you wrote down isn't actually of the form (x'x',z') or (x',y',x'). This is typically done by actually picking specific x,y,z and observing that it doesn't work.

Also, in case you didn't realize, you didn't actually pick generic elements of S, since you forced x to be the same in both of them. In some cases you could get unlucky and trick yourself into thinking it is a subspace doing this (obviously it works out ok here)
 
Office_Shredder said:
I think that's 95% of a proof, but if you want to be very technical, you should prove the thing you wrote down isn't actually of the form (x'x',z') or (x',y',x'). This is typically done by actually picking specific x,y,z and observing that it doesn't work.

Also, in case you didn't realize, you didn't actually pick generic elements of S, since you forced x to be the same in both of them. In some cases you could get unlucky and trick yourself into thinking it is a subspace doing this (obviously it works out ok here)
Well, the 2nd paragraph is really pedantic. Thanks.
 
Hall said:
Well, the 2nd paragraph is really pedantic.
On the contrary, I think @Office_Shredder makes a cogent point.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

Replies
2
Views
2K
Replies
6
Views
2K
Replies
9
Views
3K
Replies
3
Views
3K
Replies
13
Views
2K
Replies
1
Views
3K