- 24,488
- 15,057
I don't know, what you mean by "standard basis". We have an Euclidean vector space ##V## with a scalar product. A Cartesian basis ##\vec{e}_i## fulfills by definition the propery ##\vec{e}_i \cdot \vec{e}_j=\delta_{ij}##, and each vector can be uniquely written in terms of linear combinations of these Cartesian basis vectors,
$$\vec{v}=v^j \vec{e}_j.$$
Here the Einstein summation convention is used, i.e., over equal indices you have to sum. The numbers ##v^j## are the components of the vector ##\vec{v}## wrt. the Cartesian basis.
For the scalar product of two vectors you get
$$\vec{v} \cdot \vec{w} = (v^j \vec{e}_j) \cdot (w^k \vec{e}_k)= v^j w^k \delta_{jk}=w^j v^j.$$
This holds for the components wrt. any Cartesian basis. There is not any special "standard basis".
$$\vec{v}=v^j \vec{e}_j.$$
Here the Einstein summation convention is used, i.e., over equal indices you have to sum. The numbers ##v^j## are the components of the vector ##\vec{v}## wrt. the Cartesian basis.
For the scalar product of two vectors you get
$$\vec{v} \cdot \vec{w} = (v^j \vec{e}_j) \cdot (w^k \vec{e}_k)= v^j w^k \delta_{jk}=w^j v^j.$$
This holds for the components wrt. any Cartesian basis. There is not any special "standard basis".
Last edited: