Scaling Augmented Matrices: Is My Thinking Correct?

Click For Summary
Scaling an augmented matrix by a number affects the coefficient matrix but not the solution set if the right-hand side is not scaled accordingly. Multiplying every row of the augmented matrix results in equivalent equations that maintain the same solutions. However, if the coefficient matrix is scaled without adjusting the right-hand side, the solutions will change. The discussion highlights that multiplying both sides of an equation by a constant preserves the solution, emphasizing the importance of consistent scaling. Understanding this concept is crucial for grasping the properties of linear equations and their solutions.
jeremy222
Messages
4
Reaction score
0
An augmented matrix scaled by a number also means the solutions set is scaled by that same number. I believe this is true due to it basically being the same as elementary row operations preformed on each row. Unless it is a zero scalar in which case you lose all conditions. Is my method of thinking about this correct? Its not homework but I think it would help me understand a concept.
 
Physics news on Phys.org
No, that's not true. If you have an augmented matrix, say
\begin{bmatrix}a & b & c & j \\ d & e & f & k \\ g & h & i & l\end{bmatrix}
That is equivalent to the three equations ax+ by+ cz= j, dx+ ey+ fz= k, gx+ hy+ iz= l.
It is also equivalent to the matrix equation
\begin{bmatrix}a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix}= \begin{bmatrix}j \\ k \\ l\end{bmatrix}

"Scaling" the augmented matrix by a number, multiplying every row by that number, gives multiples of the same equations which have the same solutions. If you multiply the coefficient matrix in the second form by a constant, but not the right hand side, that will divide the soluutions by the number.
 
Last edited by a moderator:
one can look at the 1x1 case:

[a][x] =

if we multiply by 2, let's say, we get:

[2a][x] = [2b].

suppose a ≠ 0. then in either case, we find:

x = b/a, the solution to the 2nd equation is NOT x = 2(b/a).

it is exactly the same for

Ax = b, where A is a matrix, and b is a vector.

if A is invertible, x = A-1b.

and 2Ax = 2b has the same vector solution.

in other words, multiplying an equation on both sides by a number,

doesn't change the solution set for that equation.

if ax + by + cz = d, then for any number m:

m(ax + by + cz) = md, for the same x,y and z.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
8K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K