Hello Travis,
In the section titled "Bell's inequality theorem" you derive Bell's inequality supposing that the experimental outcomes were non-contextual (cf "To see this, suppose that the spin measurements for both particles do simply reveal pre-existing values."). To your credit, in the section on "Bell's theorem and non-contextual hidden variables" you discuss the fact that non-contextual hidden variables are naive and unreasonable.
You then proceed to show that you can still obtain the inequalities by assuming only locality in the section titled "The CHSH–Bell inequality: Bell's theorem without perfect correlations".
(1) You say
"While the values of A1 and A2 may vary from one run of the experiment to another even for the same choice of parameters, we assume that, for a fixed preparation procedure on the two systems, these outcomes exhibit statistical regularities. More precisely, we assume these are governed by probability distributions Pα1,α2(A1,A2) depending of course on the experiments performed, and in particular on α1 and α2."
By "statistical regularities" do you mean simply a probability distribution Pα1,α2(A1,A2) exists? Or are you talking about more than that.
(2) You say
"However, if locality is assumed, then it must be the case that any additional randomness that might affect system 1 after it separates from system 2 must be independent of any additional randomness that might affect system 2 after it separates from system 1. More precisely, locality requires that some set of data λ — made available to both systems, say, by a common source16 — must fully account for the dependence between A1 and A2 ; in other words, the randomness that generates A1 out of the parameter α1 and the data codified by λ must be independent of the randomness that generates A2 out of the parameter α2 and λ ."
What if instead you assumed that λ did not originate from the source but was instantaneoulsy (non-locally) imparted from a remote planet to produce result A2 together with α2, and result A1 together with α1. How can you explain away the suggestion that the rest of your argument, will now prove the impossibility of non-locality?
(3) You proceed to derive your expectation values Eα1,α2(A1A2|λ), defined over the probability measure, Pα1,α2(⋅|λ) and ultimately Bell's inequality based on it
C(\alpha_1,\alpha_2)=E_{\alpha_1,\alpha_2}(A_1A_2)=\int_\Lambda E_{\alpha_1,\alpha_2}(A_1A_2|\lambda)\,\mathrm dP(\lambda),
...
|C(\mathbf a,\mathbf b)-C(\mathbf a,\mathbf c)|+|C(\mathbf a',\mathbf b)+C(\mathbf a',\mathbf c)|\le2,
To make the following clear, I'm going to fully specify the implied notation in the above as follows:
|C(\mathbf a,\mathbf b|\lambda)-C(\mathbf a,\mathbf c|\lambda)|+|C(\mathbf a',\mathbf b|\lambda)+C(\mathbf a',\mathbf c|\lambda)|\le2,
Which starts revealing the problem.
Unless all terms in the above inequality are defined over the exact same probability measure. The above inequality does not make sense. In other words, the only way you were able to derive such an inequality was to assume that all the terms are defined over the exact same probability measure P(λ). Do you agree? If not please, show the derivation. In fact the very next "Proof" section explicitly confirms my statement.
(4) In the section titled "Experiments", you start by saying:
Bell's theorem brings out the existence of a contradiction between the empirical predictions of quantum theory and the assumption of locality.
(a) Now since you did not show it explicity in the article, I presume when you say Bell's theorem contradicts quantum theory, you mean, you have calculated the LHS of the above inequality from quantum theory and it was greater than 2. If you will be kind as to show the calculation and in the process explain how you made sure in your calculation that all the terms you used were defined over the exact same probability measure P(λ).
(b) You also discussed how several experiments have demonstrated violation of Bell's inequality, I presume by also calculating the LHS and comparing with the RHS of the above. Are you aware of any experiments in which experimenters made sure the terms from their experiments were defined over the exact same probability measure?
(5) Since you obviously agree that non-contextual hidden variables are naive and unreasonable, let us look at the inequality from the perspective of how experiments are usually performed. For this purpose, I will rewrite the four terms obtained from a typical experiment as follows:
C(\mathbf a_1,\mathbf b_1)
C(\mathbf a_2,\mathbf c_2)
C(\mathbf a_3',\mathbf b_3)
C(\mathbf a_4',\mathbf c_4)
Where each term originates from a separate run of the experiment denoted by the subscripts. Let us assume for a moment that the same distribution of λ is in play for all the above terms. However, if we were to ascribe 4 different experimental contexts to the different runs, we will have the terms.
C(\mathbf a,\mathbf b|\lambda,1)
C(\mathbf a,\mathbf c|\lambda,2)
C(\mathbf a',\mathbf b|\lambda,3)
C(\mathbf a',\mathbf c|\lambda,4)
Where we have moved the indices into the conditions. We still find that each term is defined over a different probability measure P(λ,i), i=1,2,3,4 , where i encapsulates all the different conditions which make one run of the experiment different from another.
Therefore could you please explain why this is not a real issue when we compare experimental results with the inequality.