I Schrodinger equation for N particles in a box

Click For Summary
The discussion centers on the application of the Schrödinger equation to N particles in a box, emphasizing the concept of microstates and their relation to energy distributions. Each microstate corresponds to an independent solution of the Schrödinger equation, identified by the eigenvalue of the Hamiltonian. The conversation also touches on the importance of distinguishing between bosons and fermions when considering particle placement in energy states. A specific example is provided, illustrating how two non-interacting particles can be represented using their individual Hamiltonians and eigenstates. The explanation concludes with a query about the correctness of the presented microstate formulation.
Kashmir
Messages
466
Reaction score
74
[Pathria, statistical mechanics][1], pg2 ,when discussing ##N## particles in a volume ##V##

"...there will be a large number of different
ways in which the total energy E of the system can be distributed among the N particles
constituting it. Each of these (different) ways specifies a microstate, or complexion, of the
given system"
"Each of these (different) ways specifies a microstate, or complexion, of the
given system. In general, the various microstates, or complexions, of a given system can
be identified with the independent solutions ##ψ(r_1,..., r_N )## of the Schrodinger equation of
the system, corresponding to the eigenvalue E of the relevant Hamiltonian" .
If we have N particles in a box, we solve the energy eigenvalue for the total system ##H|E>=E|E>## and find the eigenvectors.

Using linear combination of these and boundary conditions we find the general solution ##ψ(r_1,..., r_N )##.So how does "the various microstates, or complexions, of a given system can
be identified with the independent solutions ##ψ(r1,..., rN )## of the Schrodinger equation of
the system, corresponding to the eigenvalue E of the relevant Hamiltonian" enter the discussion? [1]: https://www.google.co.uk/books/edition/Statistical_Mechanics/PIk9sF9j2oUC?hl=en
 
Physics news on Phys.org
We should investigate whether N particle of same kind are bosons or fermions for their placement in energy states.
 
anuttarasammyak said:
We should investigate whether N particle of same kind are bosons or fermions for their placement in energy states.
The author didn't mention that.
 
Here is my attempt:
Suppose we have two non interacting particles in identical environment.

The individual Hamiltonian for both is ##H_1## and the total Hamiltonian is ##H=H_1 \otimes 1+ 1\otimes H_2##
Also if ##|\phi_1>## and ##|\phi_2>## are the eigenstates of ##H_1## with eigenvalues ##E_1##,## E_2## then the eigenstates of the system is ##|\phi_1> \otimes|\phi_2>## with eigenvalue ##E_1 + E_2##

One of the state of the system is then
##|\psi >= e^(-iE_1t/\hbar)|\phi_1>
\otimes e^(-iE_2t/\hbar) |\phi_2>##

This state corresponds to particle 1 in state ##|\phi_1>## having energy ##E_1## & particle 2 in ##|\phi_2>## with energy ##E_2## defining a microstate.

Is this correct?
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...