Schrödinger Equation (why are U and -x^2 =0?)

AI Thread Summary
The discussion revolves around the Schrödinger Equation and the specific condition where U and -x^2 equal zero. The original poster expresses confusion about why U cannot simply be set to zero, as it is defined as a function of x within the problem constraints. There is an emphasis on the independence of x, which can take values between -L and L. The poster seeks clarification on their reasoning and the validity of their procedure. Overall, the conversation highlights the complexities of interpreting the equation and the conditions involved.
Que7i
Messages
1
Reaction score
0
New poster has been reminded to use LaTeX for math equations (not pictures of their work)
Homework Statement
A subatomic particle with mass m is in a one-dimensional potential well. The potential energy is infinite for x < −L and for x > +L, while for −L < x < L, the potential energy is given by:U(x) =(−ℏ^2x^2)/(mL^2(L^2 − x^2)
The particle is in a stationary state described by the wave function 𝜓(x) = A(1 − x^2/L^2)
for −L < x < +L and by 𝜓(x) = 0 elsewhere. (Assume A is a positive, real constant.)
What is the total energy E of the system in terms of ℏ, m, and L?
Relevant Equations
-ℏ/(2m)d^2𝜓/dx^2+U𝜓=E𝜓
I've already found out how to do it, but, either I got lucky and my procedure is wrong or I just don't get it. Why are U and -x^2 equal 0?
1658321022479.png
1658320980320.png
 

Attachments

  • 1658320869118.png
    1658320869118.png
    13.8 KB · Views: 120
Physics news on Phys.org
You cannot pick ##U = 0##, it is given in the problem to be a particular function of x. Furthermore ##x## is an independent variable that can take any value between ##-L## and ##L##.
 
  • Like
Likes malawi_glenn
Que7i said:
I've already found out how to do it, but, either I got lucky and my procedure is wrong or I just don't get it. Why are U and -x^2 equal 0?
I can't tell what your reasoning is from your work. Could you explain to us what you're doing?
 
  • Like
Likes malawi_glenn
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top