- #1
olgerm
Gold Member
- 533
- 34
U(x,y,z,t)*ψ(x,y,z,t)-(ħ/(2*m))*(d2ψ(x,y,z,t)/dx2+d2ψ(x,y,z,t)/dy2+d2ψ(x,y,z,t)/dz2)=ħ*i*dψ(x,y,z,t)/dt
qproton=-qe
Schrödinger equation for electron in hydrogen atom (if we consider proton as point charge which is moving at a constant speed vproton→=(vp;x;vp;y;vp;z).) is:
Ue(x,y,z,t)*ψe(x,y,z,t)-(ħ/(2*me))*(d2ψe(x,y,z,t)/dx2+d2ψe(x,y,z,t)/dy2+d2ψe(x,y,z,t)/dz2)=ħ*i*dψe(x,y,z,t)/dt
Ue(x,y,z,t)=qe*qproton/(rdistance from electron to proton*ε0*4*π)=-qe2/(((xp+t*vp;x-xe-t*ve;x)2+(yp+t*vp;y-ye-t*ve;y)2+(zp+t*vp;z-ze-t*ve;z)2)(1/2)*ε0*4*π)
⇒-qe2/(((xp+t*vp;x-xe-t*ve;x)2+(yp+t*vp;y-ye-t*ve;y)2+(zp+t*vp;z-ze-t*ve;z)2)(1/2)*ε0*4*π)*ψ(x,y,z,t)-(ħ/(2*me))*(d2ψ(x,y,z,t)/dx2+d2ψ(x,y,z,t)/dy2+d2ψ(x,y,z,t)/dz2)=ħ*i*dψ(x,y,z,t)/dt
by solving it we can get electron wave function ψe(x,y,z,t) in hydrogen atom. Am I right?
But if we consider proton as wave like we did with electron:
Ue(x,y,z,t)*ψe(x,y,z,t)-(ħ/(2*me))*(d2ψe(x,y,z,t)/dx2+d2ψe(x,y,z,t)/dy2+d2ψe(x,y,z,t)/dz2)=ħ*i*dψe(x,y,z,t)/dt
Up(x,y,z,t)*ψp(x,y,z,t)-(ħ/(2*mp))*(d2ψp(x,y,z,t)/dx2+d2ψp(x,y,z,t)/dy2+d2ψp(x,y,z,t)/dz2)=ħ*i*dψp(x,y,z,t)/dt
its obvious that their potential energys are equal to each other[Ue(x,y,z,t)=Up(x,y,z,t)], but to what potential energy function equals [U(x,y,z,t)=?]?
I know it is good approximation to consider proton as point charge .I am asking this to understand Schrödinger equation better.
qproton=-qe
Schrödinger equation for electron in hydrogen atom (if we consider proton as point charge which is moving at a constant speed vproton→=(vp;x;vp;y;vp;z).) is:
Ue(x,y,z,t)*ψe(x,y,z,t)-(ħ/(2*me))*(d2ψe(x,y,z,t)/dx2+d2ψe(x,y,z,t)/dy2+d2ψe(x,y,z,t)/dz2)=ħ*i*dψe(x,y,z,t)/dt
Ue(x,y,z,t)=qe*qproton/(rdistance from electron to proton*ε0*4*π)=-qe2/(((xp+t*vp;x-xe-t*ve;x)2+(yp+t*vp;y-ye-t*ve;y)2+(zp+t*vp;z-ze-t*ve;z)2)(1/2)*ε0*4*π)
⇒-qe2/(((xp+t*vp;x-xe-t*ve;x)2+(yp+t*vp;y-ye-t*ve;y)2+(zp+t*vp;z-ze-t*ve;z)2)(1/2)*ε0*4*π)*ψ(x,y,z,t)-(ħ/(2*me))*(d2ψ(x,y,z,t)/dx2+d2ψ(x,y,z,t)/dy2+d2ψ(x,y,z,t)/dz2)=ħ*i*dψ(x,y,z,t)/dt
by solving it we can get electron wave function ψe(x,y,z,t) in hydrogen atom. Am I right?
But if we consider proton as wave like we did with electron:
Ue(x,y,z,t)*ψe(x,y,z,t)-(ħ/(2*me))*(d2ψe(x,y,z,t)/dx2+d2ψe(x,y,z,t)/dy2+d2ψe(x,y,z,t)/dz2)=ħ*i*dψe(x,y,z,t)/dt
Up(x,y,z,t)*ψp(x,y,z,t)-(ħ/(2*mp))*(d2ψp(x,y,z,t)/dx2+d2ψp(x,y,z,t)/dy2+d2ψp(x,y,z,t)/dz2)=ħ*i*dψp(x,y,z,t)/dt
its obvious that their potential energys are equal to each other[Ue(x,y,z,t)=Up(x,y,z,t)], but to what potential energy function equals [U(x,y,z,t)=?]?
I know it is good approximation to consider proton as point charge .I am asking this to understand Schrödinger equation better.
Last edited: