Schwartz's Quantum field theory (12.9)

Click For Summary

Homework Help Overview

The discussion revolves around concepts from quantum field theory, specifically focusing on the properties of identical particles and the implications of normalization conventions in the context of bosonic creation and annihilation operators. Participants are examining equations related to the commutation relations of these operators and the normalization of momentum-spin eigenstates.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are exploring the implications of a specific equation regarding identical particles and questioning the validity of certain normalization conventions used in the text. They are also discussing the relationship between different equations and whether certain results can be derived from others without additional proof.

Discussion Status

Some participants have provided insights into the normalization conventions and their implications, while others are seeking clarification on specific mathematical relationships and the necessity of proving certain statements for all states versus just the ground state.

Contextual Notes

There is mention of potentially confusing normalization conventions and the role of delta functions in the context of the equations being discussed. Participants are also considering the implications of these conventions on the scalar nature of the products involved.

Plantation
Messages
19
Reaction score
1
Homework Statement
$$[a_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}]= (2 \pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) \delta_{s_1, s_2} . $$
Relevant Equations
$$ \langle \vec{p_1} | \vec{p_2} \rangle = 2 \omega_1 ( 2\pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) $$
I am reading the Schwartz's quantum field theory, p.207 and stuck at some calculation.

In the page, he states that for identical particles,

$$ | \cdots s_1 \vec{p_1}n \cdots s_2 \vec{p_2} n \rangle = \alpha | \cdots s_2 \vec{p_2}n \cdots s_1 \vec{p_1}n \cdots \rangle, \tag{12.5}$$

where ##\alpha = e^{i\phi}## for some real ##\phi##.

From this, he argues that for boson case we obtain

$$a^{\dagger}_{\vec{p_1} s_1 n} a^{\dagger}_{\vec{p_2}s_2 n} | \psi \rangle = a^{\dagger}_{\vec{p_2}s_2 n} a^{\dagger}_{\vec{p_1} s_1 n} | \psi \rangle \tag{12.7}$$ for all ##|\psi\rangle## (I don't know why this is true from (12.5)) so that

$$ [a^{\dagger}_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}] = [a_{\vec{p_1} s_1 n}, a_{\vec{p_2}s_2 n}] =0 \tag{12.8}$$

And he saids that since ## \langle \vec{p_1} | \vec{p_2} \rangle = 2 \omega_1 ( 2\pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) ##, we can use same argument to show that

$$[a_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}]= (2 \pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) \delta_{s_1, s_2} . \tag{12.9} $$

Q. And why this is true? How can we use the formula for ##\langle \vec{p_1} | \vec{p_2} \rangle## ? What should I catch?
 
Physics news on Phys.org
He has a somewhat confusing normalization convention (in fact almost any author uses another more or less confusing convention; at the end it doesn't matter). He defines the momentum-spin eigenstates as normalized as
$$\langle \vec{p},s |\vec{p}',s' \rangle=(2 \pi)^3 \delta^{(3)} 2 \omega_{\vec{p}} (\vec{p}-\vec{p}') \delta_{s s'}$$
and the corresponding creation operator by
$$\hat{a}^{\dagger}(\vec{p},s) |\Omega \rangle=\frac{1}{\sqrt{2 \omega_{\vec{p}}}} |\vec{p},\vec{s} \rangle.$$
Adjoining this gives
$$\langle \Omega|\hat{a}(\vec{p},s) = \frac{1}{\sqrt{2 \omega_{\vec{p}}}} \langle \vec{p},s|.$$
From this you get for bosons
$$\langle \Omega |[\hat{a}(\vec{p},s), \hat{a}^{\dagger}(\vec{p}',s')]|\Omega = \langle \Omega |\hat{a}(\vec{p},s) \hat{a}^{\dagger}(\vec{p}',s') \Omega= \frac{1}{\sqrt{2 \omega_{\vec{p}}}} \frac{1}{\sqrt{2 \omega_{\vec{p}'}}} 2 \omega_{\vec{p}} (2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'}=(2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'}.$$
 
vanhees71 said:
He has a somewhat confusing normalization convention (in fact almost any author uses another more or less confusing convention; at the end it doesn't matter). He defines the momentum-spin eigenstates as normalized as
$$\langle \vec{p},s |\vec{p}',s' \rangle=(2 \pi)^3 2 \omega_{\vec{p}} \delta^{(3)} (\vec{p}-\vec{p}') \delta_{s s'}$$
and the corresponding creation operator by
$$\hat{a}^{\dagger}(\vec{p},s) |\Omega \rangle=\frac{1}{\sqrt{2 \omega_{\vec{p}}}} |\vec{p},\vec{s} \rangle.$$
Adjoining this gives
$$\langle \Omega|\hat{a}(\vec{p},s) = \frac{1}{\sqrt{2 \omega_{\vec{p}}}} \langle \vec{p},s|.$$
From this you get for bosons
$$\langle \Omega |[\hat{a}(\vec{p},s), \hat{a}^{\dagger}(\vec{p}',s')]|\Omega \rangle = \langle \Omega |\hat{a}(\vec{p},s) \hat{a}^{\dagger}(\vec{p}',s') | \Omega \rangle= \frac{1}{\sqrt{2 \omega_{\vec{p}}}} \frac{1}{\sqrt{2 \omega_{\vec{p}'}}} 2 \omega_{\vec{p}} (2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'}=(2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'}.$$

Thanks.

Question 1 : Why the final equality is true? ; i.e., why ##\frac{1}{\sqrt{2 \omega_{\vec{p}}}} \frac{1}{\sqrt{2 \omega_{\vec{p}'}}} 2 \omega_{\vec{p}} =1 ## ? Perhaps,

$$\langle \vec{p},s |\vec{p}',s' \rangle=(2 \pi)^3 2 \sqrt{\omega_{\vec{p}}} \sqrt{\omega_{\vec{p'}}} \delta^{(3)} (\vec{p}-\vec{p}') \delta_{s s'}$$

is more correct normalization condition ? ; i.e., the author (Schwartz) made mistake ?

Question 2 : Is it really enough to show only $$\langle \Omega |[\hat{a}(\vec{p},s), \hat{a}^{\dagger}(\vec{p}',s')]|\Omega \rangle = (2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'} $$ to show the (12.9) : $$[a_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}]= (2 \pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) \delta_{s_1, s_2} . $$ in my question, without having to show the statement for all ##|\psi\rangle## instead of ##\Omega## (ground state?) ?
 
Ad 1: It's together with the ##\delta## distribution, because ##\delta^{(3)}(\vec{p}-\vec{p}')=0## for ##\vec{p} \neq \vec{p}'##. The final result indeed is
$$\langle \vec{p},s|\vec{p}',s' \rangle=(2 \pi)^3 2 \omega_{\vec{p}} \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'}.$$
The advantage of this normalization convention is that this scalar product between momentum-spin eigenstates gives a Lorentz scalar.

Ad 2: It's enough, because from the canonical equal-time commutation relations, which you postulate, e.g., in the canonical-quantization argument of field quantization, it's clear that ##[\hat{a}_{\vec{p}_1 s_2 n},\hat{a}_{\vec{p}_2 s_2 n}] \propto \hat{1}##.
 
Ah, the confusion one gets when implicitly implying Dieac delta's and then forgetting about them :P
 
  • Haha
Likes   Reactions: vanhees71

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
18
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
12K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K