Schwartz's Quantum field theory (12.9)

Click For Summary
SUMMARY

The discussion revolves around the calculations presented in Schwartz's "Quantum Field Theory," specifically on page 207, concerning the commutation relations for bosonic creation and annihilation operators. The key equation derived is that the creation operators for identical bosons commute, leading to the conclusion that the commutation relation $$[a_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}] = (2 \pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) \delta_{s_1, s_2}$$ holds true. The normalization convention used for momentum-spin eigenstates is also clarified, emphasizing the importance of the delta function in the context of these operators.

PREREQUISITES
  • Understanding of quantum field theory principles
  • Familiarity with bosonic operators and their properties
  • Knowledge of delta functions and their role in quantum mechanics
  • Experience with normalization conventions in quantum states
NEXT STEPS
  • Study the derivation of the canonical commutation relations in quantum field theory
  • Learn about the implications of normalization conventions in quantum mechanics
  • Explore the properties of delta functions in the context of quantum states
  • Investigate the differences between bosonic and fermionic operator commutation relations
USEFUL FOR

Physicists, graduate students in quantum mechanics, and researchers in quantum field theory who seek to deepen their understanding of operator algebra and normalization conventions in the context of identical particles.

Plantation
Messages
19
Reaction score
1
Homework Statement
$$[a_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}]= (2 \pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) \delta_{s_1, s_2} . $$
Relevant Equations
$$ \langle \vec{p_1} | \vec{p_2} \rangle = 2 \omega_1 ( 2\pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) $$
I am reading the Schwartz's quantum field theory, p.207 and stuck at some calculation.

In the page, he states that for identical particles,

$$ | \cdots s_1 \vec{p_1}n \cdots s_2 \vec{p_2} n \rangle = \alpha | \cdots s_2 \vec{p_2}n \cdots s_1 \vec{p_1}n \cdots \rangle, \tag{12.5}$$

where ##\alpha = e^{i\phi}## for some real ##\phi##.

From this, he argues that for boson case we obtain

$$a^{\dagger}_{\vec{p_1} s_1 n} a^{\dagger}_{\vec{p_2}s_2 n} | \psi \rangle = a^{\dagger}_{\vec{p_2}s_2 n} a^{\dagger}_{\vec{p_1} s_1 n} | \psi \rangle \tag{12.7}$$ for all ##|\psi\rangle## (I don't know why this is true from (12.5)) so that

$$ [a^{\dagger}_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}] = [a_{\vec{p_1} s_1 n}, a_{\vec{p_2}s_2 n}] =0 \tag{12.8}$$

And he saids that since ## \langle \vec{p_1} | \vec{p_2} \rangle = 2 \omega_1 ( 2\pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) ##, we can use same argument to show that

$$[a_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}]= (2 \pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) \delta_{s_1, s_2} . \tag{12.9} $$

Q. And why this is true? How can we use the formula for ##\langle \vec{p_1} | \vec{p_2} \rangle## ? What should I catch?
 
Physics news on Phys.org
He has a somewhat confusing normalization convention (in fact almost any author uses another more or less confusing convention; at the end it doesn't matter). He defines the momentum-spin eigenstates as normalized as
$$\langle \vec{p},s |\vec{p}',s' \rangle=(2 \pi)^3 \delta^{(3)} 2 \omega_{\vec{p}} (\vec{p}-\vec{p}') \delta_{s s'}$$
and the corresponding creation operator by
$$\hat{a}^{\dagger}(\vec{p},s) |\Omega \rangle=\frac{1}{\sqrt{2 \omega_{\vec{p}}}} |\vec{p},\vec{s} \rangle.$$
Adjoining this gives
$$\langle \Omega|\hat{a}(\vec{p},s) = \frac{1}{\sqrt{2 \omega_{\vec{p}}}} \langle \vec{p},s|.$$
From this you get for bosons
$$\langle \Omega |[\hat{a}(\vec{p},s), \hat{a}^{\dagger}(\vec{p}',s')]|\Omega = \langle \Omega |\hat{a}(\vec{p},s) \hat{a}^{\dagger}(\vec{p}',s') \Omega= \frac{1}{\sqrt{2 \omega_{\vec{p}}}} \frac{1}{\sqrt{2 \omega_{\vec{p}'}}} 2 \omega_{\vec{p}} (2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'}=(2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'}.$$
 
vanhees71 said:
He has a somewhat confusing normalization convention (in fact almost any author uses another more or less confusing convention; at the end it doesn't matter). He defines the momentum-spin eigenstates as normalized as
$$\langle \vec{p},s |\vec{p}',s' \rangle=(2 \pi)^3 2 \omega_{\vec{p}} \delta^{(3)} (\vec{p}-\vec{p}') \delta_{s s'}$$
and the corresponding creation operator by
$$\hat{a}^{\dagger}(\vec{p},s) |\Omega \rangle=\frac{1}{\sqrt{2 \omega_{\vec{p}}}} |\vec{p},\vec{s} \rangle.$$
Adjoining this gives
$$\langle \Omega|\hat{a}(\vec{p},s) = \frac{1}{\sqrt{2 \omega_{\vec{p}}}} \langle \vec{p},s|.$$
From this you get for bosons
$$\langle \Omega |[\hat{a}(\vec{p},s), \hat{a}^{\dagger}(\vec{p}',s')]|\Omega \rangle = \langle \Omega |\hat{a}(\vec{p},s) \hat{a}^{\dagger}(\vec{p}',s') | \Omega \rangle= \frac{1}{\sqrt{2 \omega_{\vec{p}}}} \frac{1}{\sqrt{2 \omega_{\vec{p}'}}} 2 \omega_{\vec{p}} (2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'}=(2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'}.$$

Thanks.

Question 1 : Why the final equality is true? ; i.e., why ##\frac{1}{\sqrt{2 \omega_{\vec{p}}}} \frac{1}{\sqrt{2 \omega_{\vec{p}'}}} 2 \omega_{\vec{p}} =1 ## ? Perhaps,

$$\langle \vec{p},s |\vec{p}',s' \rangle=(2 \pi)^3 2 \sqrt{\omega_{\vec{p}}} \sqrt{\omega_{\vec{p'}}} \delta^{(3)} (\vec{p}-\vec{p}') \delta_{s s'}$$

is more correct normalization condition ? ; i.e., the author (Schwartz) made mistake ?

Question 2 : Is it really enough to show only $$\langle \Omega |[\hat{a}(\vec{p},s), \hat{a}^{\dagger}(\vec{p}',s')]|\Omega \rangle = (2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'} $$ to show the (12.9) : $$[a_{\vec{p_1} s_1 n}, a^{\dagger}_{\vec{p_2}s_2 n}]= (2 \pi)^3 \delta^{3}(\vec{p_1}-\vec{p_2}) \delta_{s_1, s_2} . $$ in my question, without having to show the statement for all ##|\psi\rangle## instead of ##\Omega## (ground state?) ?
 
Ad 1: It's together with the ##\delta## distribution, because ##\delta^{(3)}(\vec{p}-\vec{p}')=0## for ##\vec{p} \neq \vec{p}'##. The final result indeed is
$$\langle \vec{p},s|\vec{p}',s' \rangle=(2 \pi)^3 2 \omega_{\vec{p}} \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'}.$$
The advantage of this normalization convention is that this scalar product between momentum-spin eigenstates gives a Lorentz scalar.

Ad 2: It's enough, because from the canonical equal-time commutation relations, which you postulate, e.g., in the canonical-quantization argument of field quantization, it's clear that ##[\hat{a}_{\vec{p}_1 s_2 n},\hat{a}_{\vec{p}_2 s_2 n}] \propto \hat{1}##.
 
Ah, the confusion one gets when implicitly implying Dieac delta's and then forgetting about them :P
 
  • Haha
Likes   Reactions: vanhees71

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
18
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
11K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K