- #1
- 1,802
- 1,200
I would like to show you how to use Schwarz inequality to prove some important general theorems and solve problems about vectors in Minkowski spacetime.
Okay, Schwarz inequality states that
[tex]\left| U^{k}V^{k}\right| \leq \sqrt{(U^{i})^{2}(V^{j})^{2}}. \ \ i,j,k =1,2,3 \ \ \ (1)[/tex]
And, the equality holds if and only if [itex]U^{i} \propto V^{i}[/itex].
Let us see how we apply this to 4-vectors in Minkowski spacetime [itex]M^{4}(+1, -3)[/itex]. With this signature:
i) a vector [itex]\mathbf{U} \in M^{4}[/itex] for which
[tex]\mathbf{U} \cdot \mathbf{U} \equiv \eta_{\mu\nu}U^{\mu}U^{\nu} > 0 ,[/tex]
is called a timelike vector;
ii) a vector [itex]\mathbf{U} \in M^{4}[/itex] for which
[tex]\mathbf{U} \cdot \mathbf{U} \equiv \eta_{\mu\nu}U^{\mu}U^{\nu} < 0 ,[/tex]
is called a spacelike vector; and
iii) a vector [itex]\mathbf{U} \in M^{4}[/itex] that satisfies
[tex]\mathbf{U} \cdot \mathbf{U} \equiv \eta_{\mu\nu}U^{\mu}U^{\nu} = 0 ,[/tex]
is called a null (or lightlike) vector.
Now, suppose that [itex]\mathbf{U}[/itex] and [itex]\mathbf{V}[/itex] are two timelike vectors. Then, from the definition (i), we have
[tex]
\begin{align*}
\left(U^{i}\right)^{2} &< \left(U^{0}\right)^{2} \\
\left(V^{j}\right)^{2} &< \left(V^{0}\right)^{2} .
\end{align*}
[/tex]
These inequalities can be combined to give
[tex]\sqrt{\left(U^{i}\right)^{2}\left(V^{j}\right)^{2}} < \left| U^{0} V^{0} \right| . \ \ \ \ \ \ \ (2) [/tex]
Now, from the Schwarz inequality (1), we conclude that
[tex]
\left| U^{k}V^{k} \right| < \left| U^{0}V^{0}\right| , \ \ \ \ \ \ \ \ \ \ \ (3)
[/tex]
holds for any two timelike vectors. Thus, we have proved the following theorem
Theorem (A): No two timelike vectors can be orthogonal (in the Minkowski sense).
For,
[tex]\mathbf{U}\cdot \mathbf{V} = 0 \ \ \Rightarrow \ \ \left| U^{k}V^{k}\right| = \left| U^{0}V^{0}\right| ,[/tex] which contradicts (3). qed.
Theorem (B): If [itex]\mathbf{U},\mathbf{V}[/itex] are two timelike vectors such that [itex]U^{0} > 0, \ \ V^{0} > 0[/itex], then [itex] \mathbf{U}\cdot \mathbf{V} > 0[/itex].
Proof:
[tex]U^{k}V^{k} \leq \left|U^{k}V^{k}\right| \leq \sqrt{(U^{i})^{2}(V^{j})^{2}} .[/tex]
Using (2) or (3), and the fact that [itex]U^{0}>0[/itex] and [itex]V^{0}>0[/itex], we obtain
[tex]U^{k}V^{k} < \left|U^{0}V^{0}\right| = U^{0}V^{0} .[/tex]
Thus
[tex]U^{0}V^{0} - U^{k}V^{k} = \mathbf{U}\cdot \mathbf{V} > 0 .[/tex] qed
Theorem (C): A timelike vector cannot be orthogonal to a non-zero null vector.
Proof:
Let [itex]\mathbf{T}[/itex] be a timelike vector, and [itex]\mathbf{N}[/itex] is a non-zero null vector. This means that
[tex]\begin{align*}
\left(T^{i}\right)^{2} &< \left(T^{0}\right)^{2} \\
\left(N^{j}\right)^{2} &= \left(N^{0}\right)^{2} .
\end{align*}
[/tex]
Thus
[tex]
\left(T^{i}\right)^{2} \left(N^{j}\right)^{2} < \left( T^{0}N^{0} \right)^{2} .
[/tex]
Using the Schwarz identity (1), we get
[tex]\left( T^{k}N^{k} \right)^{2} < \left( T^{0}N^{0} \right)^{2} . \ \ \ \ \ \ (4)[/tex]
Now, suppose [itex]\mathbf{T}\cdot \mathbf{N} = 0[/itex]. This implies [itex]\left( T^{k}N^{k} \right)^{2} = \left( T^{0}N^{0} \right)^{2}[/itex] which contradicts (4). qed.
Theorem (D): If [itex]\mathbf{T}[/itex] is a timelike vector and [itex]\mathbf{T} \cdot \mathbf{S} = 0[/itex], then [itex]\mathbf{S}[/itex] is spacelike vector.
Proof:
From theorem (A), [itex]\mathbf{S}[/itex] cannot be a timelike vector. And from theorem (C), [itex]\mathbf{S}[/itex] cannot be a non-zero null vector. Thus, [itex]\mathbf{S}[/itex] must be a spacelike vector. qed.
Theorem (E): Two non-zero null vectors are orthogonal, if and only if they are proportional.
This theorem shows the bizarre and non-intuitive nature of null vectors and “orthogonality” in Minkowski spacetime.
Proof:
The “if” part is trivially obvious: Assume that the null vector [itex]\mathbf{P}[/itex] is proportional to the null vector [itex]\mathbf{N}[/itex]. Then, [itex]\mathbf{P} = \lambda \mathbf{N}[/itex] for some [itex]\lambda \in \mathbb{R}[/itex]. Thus [itex]\mathbf{P} \cdot \mathbf{N} = \lambda \left(\mathbf{N} \cdot \mathbf{N} \right) = 0 .[/itex]
The “only if” part:
[tex]\mathbf{P} \cdot \mathbf{P} = 0 \ \Rightarrow \left(P^{0}\right)^{2} = \left(P^{i}\right)^{2},[/tex]
[tex]\mathbf{N} \cdot \mathbf{N} = 0 \ \Rightarrow \left(N^{0}\right)^{2} = \left(N^{j}\right)^{2},[/tex]
and
[tex]\mathbf{P} \cdot \mathbf{N} = 0 \ \Rightarrow \ P^{0}N^{0} = P^{k} N^{k}.[/tex]
From these relations, we obtain
[tex]\left(P^{k}N^{k}\right)^{2} = \left(P^{0}N^{0}\right)^{2} = \left(P^{i}\right)^{2}\left(N^{j}\right)^{2} .[/tex]
Thus
[tex]\left| P^{k}N^{k} \right| = \sqrt{\left(P^{i}\right)^{2}\left(N^{j}\right)^{2}} .[/tex]
Since this equation is the equality case of Schwarz inequality, we conclude that [itex]P^{k} = \lambda N^{k}[/itex] for some scalar [itex]\lambda \neq 0[/itex]. Since [itex]N^{0} \neq 0[/itex], we have
[tex]P^{0} = \frac{P^{k}N^{k}}{N^{0}} = \lambda \frac{N^{k}N^{k}}{N^{0}} = \lambda N^{0} .[/tex]
Thus [itex]\mathbf{P} = \left(\lambda N^{0} , \lambda N^{k}\right) = \lambda \mathbf{N}[/itex]. qed.
Okay, almost all other results follow from the above theorems. So, good luck to you all.
Okay, Schwarz inequality states that
[tex]\left| U^{k}V^{k}\right| \leq \sqrt{(U^{i})^{2}(V^{j})^{2}}. \ \ i,j,k =1,2,3 \ \ \ (1)[/tex]
And, the equality holds if and only if [itex]U^{i} \propto V^{i}[/itex].
Let us see how we apply this to 4-vectors in Minkowski spacetime [itex]M^{4}(+1, -3)[/itex]. With this signature:
i) a vector [itex]\mathbf{U} \in M^{4}[/itex] for which
[tex]\mathbf{U} \cdot \mathbf{U} \equiv \eta_{\mu\nu}U^{\mu}U^{\nu} > 0 ,[/tex]
is called a timelike vector;
ii) a vector [itex]\mathbf{U} \in M^{4}[/itex] for which
[tex]\mathbf{U} \cdot \mathbf{U} \equiv \eta_{\mu\nu}U^{\mu}U^{\nu} < 0 ,[/tex]
is called a spacelike vector; and
iii) a vector [itex]\mathbf{U} \in M^{4}[/itex] that satisfies
[tex]\mathbf{U} \cdot \mathbf{U} \equiv \eta_{\mu\nu}U^{\mu}U^{\nu} = 0 ,[/tex]
is called a null (or lightlike) vector.
Now, suppose that [itex]\mathbf{U}[/itex] and [itex]\mathbf{V}[/itex] are two timelike vectors. Then, from the definition (i), we have
[tex]
\begin{align*}
\left(U^{i}\right)^{2} &< \left(U^{0}\right)^{2} \\
\left(V^{j}\right)^{2} &< \left(V^{0}\right)^{2} .
\end{align*}
[/tex]
These inequalities can be combined to give
[tex]\sqrt{\left(U^{i}\right)^{2}\left(V^{j}\right)^{2}} < \left| U^{0} V^{0} \right| . \ \ \ \ \ \ \ (2) [/tex]
Now, from the Schwarz inequality (1), we conclude that
[tex]
\left| U^{k}V^{k} \right| < \left| U^{0}V^{0}\right| , \ \ \ \ \ \ \ \ \ \ \ (3)
[/tex]
holds for any two timelike vectors. Thus, we have proved the following theorem
Theorem (A): No two timelike vectors can be orthogonal (in the Minkowski sense).
For,
[tex]\mathbf{U}\cdot \mathbf{V} = 0 \ \ \Rightarrow \ \ \left| U^{k}V^{k}\right| = \left| U^{0}V^{0}\right| ,[/tex] which contradicts (3). qed.
Theorem (B): If [itex]\mathbf{U},\mathbf{V}[/itex] are two timelike vectors such that [itex]U^{0} > 0, \ \ V^{0} > 0[/itex], then [itex] \mathbf{U}\cdot \mathbf{V} > 0[/itex].
Proof:
[tex]U^{k}V^{k} \leq \left|U^{k}V^{k}\right| \leq \sqrt{(U^{i})^{2}(V^{j})^{2}} .[/tex]
Using (2) or (3), and the fact that [itex]U^{0}>0[/itex] and [itex]V^{0}>0[/itex], we obtain
[tex]U^{k}V^{k} < \left|U^{0}V^{0}\right| = U^{0}V^{0} .[/tex]
Thus
[tex]U^{0}V^{0} - U^{k}V^{k} = \mathbf{U}\cdot \mathbf{V} > 0 .[/tex] qed
Theorem (C): A timelike vector cannot be orthogonal to a non-zero null vector.
Proof:
Let [itex]\mathbf{T}[/itex] be a timelike vector, and [itex]\mathbf{N}[/itex] is a non-zero null vector. This means that
[tex]\begin{align*}
\left(T^{i}\right)^{2} &< \left(T^{0}\right)^{2} \\
\left(N^{j}\right)^{2} &= \left(N^{0}\right)^{2} .
\end{align*}
[/tex]
Thus
[tex]
\left(T^{i}\right)^{2} \left(N^{j}\right)^{2} < \left( T^{0}N^{0} \right)^{2} .
[/tex]
Using the Schwarz identity (1), we get
[tex]\left( T^{k}N^{k} \right)^{2} < \left( T^{0}N^{0} \right)^{2} . \ \ \ \ \ \ (4)[/tex]
Now, suppose [itex]\mathbf{T}\cdot \mathbf{N} = 0[/itex]. This implies [itex]\left( T^{k}N^{k} \right)^{2} = \left( T^{0}N^{0} \right)^{2}[/itex] which contradicts (4). qed.
Theorem (D): If [itex]\mathbf{T}[/itex] is a timelike vector and [itex]\mathbf{T} \cdot \mathbf{S} = 0[/itex], then [itex]\mathbf{S}[/itex] is spacelike vector.
Proof:
From theorem (A), [itex]\mathbf{S}[/itex] cannot be a timelike vector. And from theorem (C), [itex]\mathbf{S}[/itex] cannot be a non-zero null vector. Thus, [itex]\mathbf{S}[/itex] must be a spacelike vector. qed.
Theorem (E): Two non-zero null vectors are orthogonal, if and only if they are proportional.
This theorem shows the bizarre and non-intuitive nature of null vectors and “orthogonality” in Minkowski spacetime.
Proof:
The “if” part is trivially obvious: Assume that the null vector [itex]\mathbf{P}[/itex] is proportional to the null vector [itex]\mathbf{N}[/itex]. Then, [itex]\mathbf{P} = \lambda \mathbf{N}[/itex] for some [itex]\lambda \in \mathbb{R}[/itex]. Thus [itex]\mathbf{P} \cdot \mathbf{N} = \lambda \left(\mathbf{N} \cdot \mathbf{N} \right) = 0 .[/itex]
The “only if” part:
[tex]\mathbf{P} \cdot \mathbf{P} = 0 \ \Rightarrow \left(P^{0}\right)^{2} = \left(P^{i}\right)^{2},[/tex]
[tex]\mathbf{N} \cdot \mathbf{N} = 0 \ \Rightarrow \left(N^{0}\right)^{2} = \left(N^{j}\right)^{2},[/tex]
and
[tex]\mathbf{P} \cdot \mathbf{N} = 0 \ \Rightarrow \ P^{0}N^{0} = P^{k} N^{k}.[/tex]
From these relations, we obtain
[tex]\left(P^{k}N^{k}\right)^{2} = \left(P^{0}N^{0}\right)^{2} = \left(P^{i}\right)^{2}\left(N^{j}\right)^{2} .[/tex]
Thus
[tex]\left| P^{k}N^{k} \right| = \sqrt{\left(P^{i}\right)^{2}\left(N^{j}\right)^{2}} .[/tex]
Since this equation is the equality case of Schwarz inequality, we conclude that [itex]P^{k} = \lambda N^{k}[/itex] for some scalar [itex]\lambda \neq 0[/itex]. Since [itex]N^{0} \neq 0[/itex], we have
[tex]P^{0} = \frac{P^{k}N^{k}}{N^{0}} = \lambda \frac{N^{k}N^{k}}{N^{0}} = \lambda N^{0} .[/tex]
Thus [itex]\mathbf{P} = \left(\lambda N^{0} , \lambda N^{k}\right) = \lambda \mathbf{N}[/itex]. qed.
Okay, almost all other results follow from the above theorems. So, good luck to you all.