Im having some trouble coming up with my six independent connection 1-forms.(adsbygoogle = window.adsbygoogle || []).push({});

I have been given a metric:

[tex]g = -H_0(r)^2dt\otimes dt + H_1(r)^2 dr\otimes dr + r^2 d\theta\otimes d\theta + r^2\sin^2\theta d\phi \otimes d\phi[/tex].

I need to find [itex]H_0(r)[/itex] and [itex]H_1(r)[/itex], which are functions of r and not t, so the solutions are static. I must calculate everything using Cartan's formalism.

So the first thing I did was choose my orthonormal basis:

[tex]e_0 = \frac{1}{H_0(r)}\partial_t \quad e_1 = \frac{1}{H_1(r)}\partial_r \quad e_2 = \frac{1}{r}\partial_{\theta} \quad e_3 = \frac{1}{r\sin\theta}\partial_{\phi}[/tex]

so that my dual basis is:

[tex]\varepsilon^0 = H_0(r)\mbox{d}t \quad \varepsilon^1 = H_1(r)\mbox{d}r \quad \varepsilon^2 = r\mbox{d}\theta \quad \varepsilon^3 = r\sin\theta\mbox{d}\phi[/tex]

Now, using Cartan's structural relations I calculated:

[tex]\mbox{d}\varepsilon^0 = -\omega_{10}\wedge\varepsilon^1 - \omega_{20}\wedge\varepsilon^2 - \omega_{30}\wedge \varepsilon^3\quad [1][/tex]

[tex]\mbox{d}\varepsilon^1 = -\omega_{12}\wedge\varepsilon^2 - \omega_{13}\wedge\varepsilon^3 - \omega_{10}\wedge\varepsilon^0\quad [2][/tex]

[tex]\mbox{d}\varepsilon^2 = \omega_{12}\wedge\varepsilon^1 - \omega_{23}\wedge\varepsilon^3 - \omega_{20}\wedge \varepsilon^0\quad [3][/tex]

[tex]\mbox{d}\varepsilon^3 = \omega_{13}\wedge\varepsilon^1 + \omega_{23}\wedge\varepsilon^2 - \omega_{30}\wedge\varepsilon^0\quad [4][/tex]

But now I am stuck. I should be able to find 6 independent connection 1-forms but I dont know how to simplify all the above equations. Any guidance from here would be very helpful.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Schwarzschild Solution using Cartan's Equations

**Physics Forums | Science Articles, Homework Help, Discussion**