Second derivative positive implikes midpoint convex

resolvent1
Messages
24
Reaction score
0
I've been trying to use Taylor's theorem with h = (y-x)/2 to show that a twice differentiable function for which the second derivative is positive is midpoint convex (ie, f( (1/2)*(x+y) ) \leq (1/2) * (f(x)+f(y)) ). (It's not a homework problem.) The problem I end up with this is that I'm not sure how to show that the sum of the terms involving the first and second derivative is nonpositive. How would I go about showing this, or is there a better (non-Taylor) way to do it?
 
Physics news on Phys.org
Taylor series seems overwhelming for this kind of problem. I would try using a mean value theorem styled argument (post again if you need further guidance)
 
THanks, I've got it.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K