Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Seesaw mass matrix and neutrino masses

  1. Jun 1, 2015 #1
    Hi

    Since a few days I've been confused about the seesaw mass matrix explaining neutrino masses. It is the following matrix:
    [itex]\begin{pmatrix} 0 & m\\ m & M \\ \end{pmatrix}[/itex].

    As can easily be checked it has two eigenvalues which are given by [itex]M[/itex] and [itex]-m^2/M[/itex] in the limit [itex]M>>m[/itex] (the limit doesn't really matter one is always negative when M and m are positive). It seems really weird to me that you would have a negative mass.

    As a lot of papers on the subject (Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Phys. Lett. B98 (1981) 265 and others) will tell you the "mass eigenstates" have masses [itex]M[/itex] and [itex]m^2/M[/itex] without the minus sign. This makes me feel like I'm missing something that makes the sign irrelevant. Could anyone help me with this?

    Thanks in advance!
     
  2. jcsd
  3. Jun 1, 2015 #2

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    The sign is not irrelevant, it is related to the Majorana phase of the eigenstate. The mass of the particle is the absolute value of the eigenvalue.

    Edit: You will notice that also the Dirac mass matrix
    $$
    \begin{pmatrix}
    0 & m \\
    m & 0
    \end{pmatrix}
    $$
    has one positive and one negative eigenvalue.
     
  4. Jun 1, 2015 #3
    Thanks for your reply. I will look into it a bit more.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Seesaw mass matrix and neutrino masses
  1. The mass of strings (Replies: 2)

Loading...