Self adjoint operators in spherical polar coordinates

  • #1
JALAJ CHATURVEDI
2
0
Hi, I have a general question. How do I show that an operator expressed in spherical coordinates is self adjoint ? e.g. suppose i have the operator i ∂/∂ϕ. If the operator was a function of x I know exactly what to do, just check
<ψ|Qψ>=<Qψ|ψ>
But what about dr, dphi and d theta
 

Answers and Replies

  • #2
Cryo
Gold Member
173
74
You need to know what your inner product is. The adjointness is defined relative to inner product, i.e. an operator may or may not be self-adjoint depending on which inner product you use.

Normally, for full 3d spherical polars ##\langle \psi_1 | \psi_2 \rangle = \int d^3 r \psi_2^{*} \left(\boldsymbol{r}\right)\psi_1 \left(\boldsymbol{r}\right)=\int_0^\infty r^2 dr \int_0^\pi \sin\theta d\theta \int_0^{2\pi} \psi_2^{*} \left(r,\,\theta,\,\phi\right)\psi_1 \left(r,\,\theta,\,\phi\right)##

It therefore makes sense to define the inner product for functions of ##\phi## as ##\langle \Phi_1 | \Phi_2\rangle=\int_0^{2\pi} d\phi \Phi_1^{*}\left(\phi\right)\Phi_2\left(\phi\right)##. Now an operator ##\hat{O}## on this Hilbert space (function of ##\phi## in the domain ##0\dots2\pi##) is self-adjoint if:

##\int_0^{2\pi} d\phi \Phi_1^{*}\left(\phi\right)\hat{O}\Phi_2\left(\phi\right)=\int_0^{2\pi} d\phi \Phi_2\left(\phi\right) \hat{O} \Phi_1^{*}\left(\phi\right)##
 

Suggested for: Self adjoint operators in spherical polar coordinates

Replies
1
Views
741
Replies
8
Views
323
Replies
1
Views
64
Replies
1
Views
105
Replies
3
Views
770
Top