- #1

- 7

- 0

## Homework Statement

Use separation of variables to find a general series solution of

[tex]u_t + 4tu = u_{xx}[/tex] for [tex]0 < x < 1, t> 0 [/tex] and [tex]u(0,t) = u(1,t)=0[/tex].

## Homework Equations

## The Attempt at a Solution

Looking for a solution of the form [tex]u(x,t) = X(x)T(t)[/tex] implies that [tex]\frac{T'}{kt} - \frac{X''}{X} = 0 \implies \frac{T'}{kT} = \frac{X''}{X} = - \lambda[/tex] where [tex]\lambda[/tex] is a constant.

Then we consider the following eigenvalue problem

[tex]X'' = -\lambda X[/tex] for [tex]0 < x < 1[/tex]

[tex]X(0) = 0 = X(1)[/tex]

If [tex]\lambda = \beta^2 > 0[/tex] then [tex]X(x) = C \cos (\beta x) + D \sin(\sin x)[/tex]. The boundary conditions imply that [tex]C=0[/tex] and [tex]\beta_n = (n \pi)^2[/tex] for [tex]n \in \mathbb{Z}^+[/tex]. All eigenvalues are positive.

Solving [tex]\frac{T'_n}{kT_n} = -\pi^2 n^2 \implies T_n(t) = A_n e^{-k\pi^2 n^2 t}[/tex].

Therefore, [tex]u(x,t) = \sum_{n=1}^\infty A_n \sin (n\pi x) e^{-k(n\pi)^2 t}[/tex] is the general series solution.

BUT!!! I don't believe this is correct... :P Any corrections?