Hi All,(adsbygoogle = window.adsbygoogle || []).push({});

I have a problem involving some special functions (Meijer-G functions) that I'd like to approximate. At zero argument their first derivative vanishes, but their second and all higher derivatives vanish. (c.f. [itex]f(x)=x^{3/2}[/itex]). Playing about with some identities from Gradshteyn and Rhyzik, it looked to me as if this divergence goes like a negative fractional power of the argument, but I can ask Mathematica to give me a series expansion of the function about the origin, wherupon it returns something like:

[tex]f(x) =a + x^2 (b+ c Log[x])+ \ldots [/tex]

where a,b, c are real numbers.

How can I compute a "generalised taylor series" of this form analytically myself?

Thanks in advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Series expansion around a singular point.

**Physics Forums | Science Articles, Homework Help, Discussion**