Setting up differential equation

Click For Summary
The discussion revolves around setting up a differential equation for a tank containing saltwater. The initial conditions include 200 gallons of water with 100 pounds of salt, with water entering at 3 gallons per minute and exiting at 2 gallons per minute. The participant struggles to derive the correct differential equation, initially proposing dQ/dt = 3 - (Q / (200+t))2, but questions why the solution book states dQ/dt = 3 - Q(t). Clarification reveals that Q(t) represents the amount of salt leaving the tank, which is influenced by the changing concentration due to the inflow and outflow rates. The conversation highlights confusion over the proper formulation of the equation and the implications of the tank's changing volume.
ImAnEngineer
Messages
209
Reaction score
1

Homework Statement


A tank with a capacity of 500 gal originally contains 200 gal of water with 100 lb of salt
in solution. Water containing 1 lb of salt per gallon is entering at a rate of 3 gal/min, and
the mixture is allowed to flow out of the tank at a rate of 2 gal/min. Find the amount
of salt in the tank at any time prior to the instant when the solution begins to overflow.
Find the concentration (in pounds per gallon) of salt in the tank when it is on the point of
overflowing. Compare this concentration with the theoretical limiting concentration if the
tank had infinite capacity.

2. The attempt at a solution
I get stuck in the very beginning where you have to set up the differential equation.

dQ/dt = rate of flow in - rate of flow out

rate of flow in = 3gal/min × 1 lb/gal = 3 lb/min

(C = concentration, Q = quantity of salt, V = Volume)
rate of flow out = C r = (Q / V) r
The volume changes; starts at 200 and 3-2=1 gallon per minute extra:
V = 200 + t
And r=2

So: dQ/dt = 3 - (Q / 200+t)2, which I would then have to solve.

But according to my answer book the equation that has to be solved is:
dQ/dt = 3 - Q(t)

Does anyone understand how they get there?
Thanks!
 
Physics news on Phys.org
The first sentence gives the initial conditions of the tank. What does Q(t) represent? It's the amount of salt leaving the tank as a function of time and this is not explicitly known because of the mixing that is occurring with differing amounts of salt concentration, whereas the input concentration is explicitly known and is a constant.
 
chrisk said:
The first sentence gives the initial conditions of the tank. What does Q(t) represent? It's the amount of salt leaving the tank as a function of time and this is not explicitly known because of the mixing that is occurring with differing amounts of salt concentration, whereas the input concentration is explicitly known and is a constant.
Yes, I had figured that out... but why would that give you the equation:

dQ/dt = 3 - Q(t) ?
 
I got what you got. Are you sure you're not reading the answer to a different problem? The equation dQ/dt=3-Q is the sort of equation that would result if the inflow and outflow rates are equal.
 
Billy Bob said:
I got what you got. Are you sure you're not reading the answer to a different problem? The equation dQ/dt=3-Q is the sort of equation that would result if the inflow and outflow rates are equal.
That's what I thought as well... I checked and I really am looking at the correct corresponding answer to the problem. It says:

Salt flows into the tank at the rate of (1)(3) lb/min. and
it flows out of the tank at the rate of (2) lb/min. since
the volume of water in the tank at any time t is 200 +
(1)(t) gallons (due to the fact that water flows into the
tank faster than it flows out). Thus the I.V.P. is dQ/dt =
3 - Q(t), Q(0) = 100.

Strange isn't it?

I thought it was me, but if I'm right I'll just skip this one.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
4K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K