Shine Bright: Solving the Equation \sinh 3x = 4\sinh^3x + 3 \sinh x

  • Thread starter Thread starter chwala
  • Start date Start date
Click For Summary
The discussion focuses on proving the hyperbolic identity \sinh 3x = 4\sinh^3x + 3\sinh x, derived from the equation \sinh 3x = 3\sinh x - 4\sinh^3x. Participants explore various transformations of the hyperbolic sine function, utilizing properties of hyperbolic and trigonometric functions. There is a correction noted regarding the original equation, emphasizing that the correct form includes a positive sign before the cubic term. The conversation highlights the differences between normal and hyperbolic trigonometric identities, underscoring the importance of careful calculations in proving these relationships. The thread concludes with a reminder of the distinct nature of hyperbolic functions compared to their trigonometric counterparts.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
Prove the hyperbolic function corresponding to the given trigonometric function.

##\sin 3x = 3\sin x- 4\sin^3x##
Relevant Equations
hyperbolic trig. properties.
We shall have;

##\sinh 3x = 3\sinh x- 4\sinh^3x##

##\sinh 3x =\sinh (2x+x)=\sinh 2x \cosh x + \cosh 2x \sinh x##

##\sinh 3x= 2\sinh x \cosh x \cosh x + (1+2 \sin^2x) \sinh x##

##\sinh 3x=2 \sinh x \cosh^2 x + \sinh x + 2\sinh^3x##

##\sinh 3x= 2\sinh x + 2\sinh^3 x + \sinh x + 2\sinh^3x##

##\sinh 3x = 4\sinh^3x + 3 \sinh x##

Insight welcome...today i have been singing shine shine shine :bow::bow::cool:
 
Physics news on Phys.org
chwala said:
Homework Statement:: Prove the hyperbolic function corresponding to the given trigonometric function.

##\sin 3x = 3\sin x- 4\sin^3x##
Relevant Equations:: hyperbolic trig. properties.

We shall have;

##\sinh 3x = 3\sinh x- 4\sinh^3x##

##\sinh 3x =\sinh (2x+x)=\sinh 2x \cosh x + \cosh 2x \sinh x##

##\sinh 3x= 2\sinh x \cosh x \cosh x + (1+2 \sin^2x) \sinh x##

##\sinh 3x=2 \sinh x \cosh^2 x + \sinh x + 2\sinh^3x##

##\sinh 3x= 2\sinh x + 2\sinh^3 x + \sinh x + 2\sinh^3x##

##\sinh 3x = 4\sinh^3x + 3 \sinh x##

Insight welcome...today i have been singing shine shine shine :bow::bow::cool:
Rather than repeatedly writing the left-hand side in every equation, I find it easier to read (and write) as a chain of equalities leading from the original left-hand side to the final right-hand expression.

IOW, like this:
##\sinh 3x ##
## =\sinh (2x+x)=\sinh 2x \cosh x + \cosh 2x \sinh x##
## =2\sinh x \cosh x \cosh x + (1+2 \sin^2x) \sinh x##
## = \dots ##
## = 4\sinh^3x + 3 \sinh x##
 
  • Like
Likes chwala and robphy
chwala said:
Homework Statement:: Prove the hyperbolic function corresponding to the given trigonometric function.

##\sin 3x = 3\sin x- 4\sin^3x##
Relevant Equations:: hyperbolic trig. properties.

Insight welcome...today i have been singing shine shine shine :bow::bow::cool:
Direct calculation from the formula
\sinh x=\frac{e^x-e^{-x}}{2}
\sin x=\frac{e^{ix}-e^{-ix}}{2i}
will give us the results including the different sign.
 
chwala said:
Homework Statement:: Prove the hyperbolic function corresponding to the given trigonometric function.

##\sin 3x = 3\sin x- 4\sin^3x##
Relevant Equations:: hyperbolic trig. properties.

We shall have;

##\sinh 3x = 3\sinh x- 4\sinh^3x## ...
In case it's not already clear, what you tried to prove:
##\sinh 3x = 3\sinh x- 4\sinh^3x##
is incorrect. It should be:
##\sinh 3x = 3\sinh x+ 4\sinh^3x##
which is what you correctly proved,

Normal and hyperbolic trig' identities don't necessarily match. For example ##cos^2x + sin^2x = 1## but ##cosh^2 – sinh^2x = 1##.
 

Similar threads

Replies
32
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K