A Should luminosity distance be 0 at z=0?

  • A
  • Thread starter Thread starter johnio09
  • Start date Start date
AI Thread Summary
The discussion centers on the confusion regarding luminosity distance at redshift z=0, particularly in relation to equations presented in a referenced paper. It highlights that while the comoving distance is not zero at z=0, it equals the luminosity distance, which leads to a potential divide by zero error in calculations. Participants clarify that at z=0, the luminosity distance can be derived from the inverse square law, and as redshift increases, the two distances diverge. There is also a mention of the need to relate Hogg's equations to redshift, as the original paper suggests luminosity distance is solely a function of redshift. The conversation underscores the complexity of integrating evolutionary factors and density influences on distance measures in cosmology.
johnio09
Messages
4
Reaction score
0
I am working on coding up the luminosity function for blazars but I have ran into a problem. In equations 1-3 of this paper https://arxiv.org/pdf/1912.01622 they state that the flux can be broken down into two components: one where z=0 and one part that is the evolutionary factor. The problem I have noticed is that in their equation for z=0 (eq. 3), there is 𝐿_𝛾 in the denominator, which is a function of the luminosity distance (eq. 2) https://ned.ipac.caltech.edu/level5/Hogg/Hogg4.html, the comoving distance would be 0 when z=0, resulting in luminosity distance being 0 when z=0 (according to 𝑑_𝐿=(1+𝑧)d_c). Hence this results in a divide by 0 error when trying to use their formula. Could somebody please help me understand what's going on? Thank you.
 
Astronomy news on Phys.org
At z=0 the comoving distance is not zero, but equal to the luminosity distance. I.e. it's just the same then as the distance one would infer from the inverse square law when looking at a source of known intrinsic luminosity in a non-expanding space (eq. 19 in Hogg).
With growing z the two distances diverge (by the 1+z factor).

The only case when the comoving distance is zero, is when you're at the source (as with any other distance).
 
Bandersnatch said:
At z=0 the comoving distance is not zero, but equal to the luminosity distance. I.e. it's just the same then as the distance one would infer from the inverse square law when looking at a source of known intrinsic luminosity in a non-expanding space (eq. 19 in Hogg).
With growing z the two distances diverge (by the 1+z factor).

The only case when the comoving distance is zero, is when you're at the source (as with any other distance).
eq 19 in Hogg, however, is a function of luminosity and flux. In eq 2 of the other paper they state that luminosity distance is purely a function of redshift, if I am not mistaken. How would I be able to relate Hogg's equation to make it so that it is only a function of redshift?
 
I find the paper a bit too hard to follow, but I'd wager they just mean the d_L=(1+z)d_c relation.
 
Looking over it I came to similar conclusion. What I find interesting is that they aren't showing the influence of the matter/radiation density evolution at different redshifts.
Hoggs if I recall addresses this in his comologicsl distance measures article.
 
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Today at about 4:30 am I saw the conjunction of Venus and Jupiter, where they were about the width of the full moon, or one half degree apart. Did anyone else see it? Edit: The moon is 2,200 miles in diameter and at a distance of 240,000 miles. Thereby it subtends an angle in radians of 2,200/240,000=.01 (approximately). With pi radians being 180 degrees, one radian is 57.3 degrees, so that .01 radians is about .50 degrees (angle subtended by the moon). (.57 to be more exact, but with...
Back
Top