A Should luminosity distance be 0 at z=0?

  • A
  • Thread starter Thread starter johnio09
  • Start date Start date
AI Thread Summary
The discussion centers on the confusion regarding luminosity distance at redshift z=0, particularly in relation to equations presented in a referenced paper. It highlights that while the comoving distance is not zero at z=0, it equals the luminosity distance, which leads to a potential divide by zero error in calculations. Participants clarify that at z=0, the luminosity distance can be derived from the inverse square law, and as redshift increases, the two distances diverge. There is also a mention of the need to relate Hogg's equations to redshift, as the original paper suggests luminosity distance is solely a function of redshift. The conversation underscores the complexity of integrating evolutionary factors and density influences on distance measures in cosmology.
johnio09
Messages
4
Reaction score
0
I am working on coding up the luminosity function for blazars but I have ran into a problem. In equations 1-3 of this paper https://arxiv.org/pdf/1912.01622 they state that the flux can be broken down into two components: one where z=0 and one part that is the evolutionary factor. The problem I have noticed is that in their equation for z=0 (eq. 3), there is 𝐿_𝛾 in the denominator, which is a function of the luminosity distance (eq. 2) https://ned.ipac.caltech.edu/level5/Hogg/Hogg4.html, the comoving distance would be 0 when z=0, resulting in luminosity distance being 0 when z=0 (according to 𝑑_𝐿=(1+𝑧)d_c). Hence this results in a divide by 0 error when trying to use their formula. Could somebody please help me understand what's going on? Thank you.
 
Astronomy news on Phys.org
At z=0 the comoving distance is not zero, but equal to the luminosity distance. I.e. it's just the same then as the distance one would infer from the inverse square law when looking at a source of known intrinsic luminosity in a non-expanding space (eq. 19 in Hogg).
With growing z the two distances diverge (by the 1+z factor).

The only case when the comoving distance is zero, is when you're at the source (as with any other distance).
 
Bandersnatch said:
At z=0 the comoving distance is not zero, but equal to the luminosity distance. I.e. it's just the same then as the distance one would infer from the inverse square law when looking at a source of known intrinsic luminosity in a non-expanding space (eq. 19 in Hogg).
With growing z the two distances diverge (by the 1+z factor).

The only case when the comoving distance is zero, is when you're at the source (as with any other distance).
eq 19 in Hogg, however, is a function of luminosity and flux. In eq 2 of the other paper they state that luminosity distance is purely a function of redshift, if I am not mistaken. How would I be able to relate Hogg's equation to make it so that it is only a function of redshift?
 
I find the paper a bit too hard to follow, but I'd wager they just mean the d_L=(1+z)d_c relation.
 
Looking over it I came to similar conclusion. What I find interesting is that they aren't showing the influence of the matter/radiation density evolution at different redshifts.
Hoggs if I recall addresses this in his comologicsl distance measures article.
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Back
Top