MHB Show ⌊a¹⁷⁸⁸⌋ and ⌊a¹⁹⁸⁸⌋ are both divisible by 17

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion focuses on proving that both ⌊a¹⁷⁸⁸⌋ and ⌊a¹⁹⁸⁸⌋ are divisible by 17, where a is the greatest positive root of the polynomial x³ - 3x² + 1. By applying Newton's identities, the sequence P_n is established, revealing a periodicity of 16 when calculated modulo 17. It is shown that P_n = 1 mod 17 for n of the form 8k + 4, which includes both 1788 and 1988. As a result, since the contributions from the other roots diminish for large n, it follows that ⌊a^n⌋ is congruent to 0 mod 17. The proof confirms the divisibility of both floor expressions by 17.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show ⌊a¹⁷⁸⁸⌋ and ⌊a¹⁹⁸⁸⌋ are both divisible by 17

Let $a$ be the greatest positive root of the equation $x^3− 3x^2+ 1 = 0$.

Show that $\left\lfloor{a^{1788}}\right\rfloor$ and $\left\lfloor{a^{1988}}\right\rfloor$ are both divisible by 17.
 
Mathematics news on Phys.org
Re: Show ⌊a¹⁷⁸⁸⌋ and ⌊a¹⁹⁸⁸⌋ are both divisible by 17

anemone said:
Let $a$ be the greatest positive root of the equation $x^3− 3x^2+ 1 = 0$.

Show that $\left\lfloor{a^{1788}}\right\rfloor$ and $\left\lfloor{a^{1988}}\right\rfloor$ are both divisible by 17.
[sp]Let $f(x) = x^3− 3x^2+ 1$. Then $f(-1) = -3$, $f(0) = 1$, $f(1) = -1$, $f(2) = -3$ and $f(3) = 1$. By the intermediate value theorem, the largest root, $a$, lies between $2$ and $3$; and the other two roots, $b$ and $c$, lie between $-1$ and $1$.

Let $P_n = a^n + b^n + c^n$. By Newton's identities, $$P_0 = P_1 = 3,\quad P_2 = 9, \quad P_3 = 24, \quad P_n = 3P_{n-1} - P_{n-3}\ \ (n>3).$$ Working mod $17$, it is easy to use that recurrence relation to calculate $P_n \pmod{17}$: $$ \begin{array}{r|ccccccccccccccccccc}n& 0&1&2&3&4 & 5&6&7&8&9 & 10&11&12&13&14 & 15&16&17&18 \\ \hline P_n\pmod{17}& 3&3&9&7&1 & 11&9&9&16&5 & 6&2&1&14&6 & 0&3&3&9 \end{array}.$$ Notice that the sequence starts to repeat when $n=16$, and therefore has period $16$. Also, $P_4 = P_{12} = 1 \pmod{17}$. It follows that $P_n = 1 \pmod{17}$ whenever $n$ is of the form $8k+4$.

But $P_n = a^n + b^n + c^n$. When $n$ is large and even, $b^n$ and $c^n$ will both be small and positive. In particular, $0<b^n+c^n<1$. So if $P_n=1\pmod{17}$ then $\left\lfloor a^n \right\rfloor = 0\pmod{17}$. Since $1788$ and $1988$ are both of the form $8k+4$, the result is proved.

[/sp]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
4
Views
2K