MHB Show existence of subsequences

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Existence
Click For Summary
SUMMARY

The discussion centers on the existence of increasing and decreasing subsequences within a bounded sequence $(a_n)$, specifically showing that subsequences $(a_{k_n})$ and $(a_{m_n})$ converge to the supremum and infimum, respectively. A construction method is proposed to derive the increasing subsequence converging to $\sup_{\ell} a_{\ell}$ using the least upper bound property. However, a counterexample is presented, demonstrating that not all bounded sequences allow for such subsequences, particularly when the sequence does not attain its bounds.

PREREQUISITES
  • Understanding of bounded sequences in real analysis
  • Familiarity with the concepts of supremum and infimum
  • Knowledge of subsequences and convergence in mathematical analysis
  • Proficiency in applying the squeeze theorem
NEXT STEPS
  • Study the properties of bounded sequences in real analysis
  • Learn about the least upper bound property and its implications
  • Explore the construction of subsequences in various contexts
  • Investigate counterexamples in convergence and subsequence theory
USEFUL FOR

Mathematics students, educators, and researchers interested in real analysis, particularly those focusing on sequence convergence and properties of bounded sequences.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Let $(a_n)$ be a bounded sequence such that $\inf_{\ell} a_{\ell}<a_n< \sup_{\ell} a_{\ell}$ for each $n=1,2, \dots$

I want to show that there are subsequences $(a_{k_n})$ increasing and $(a_{m_n})$ decreasing such that $a_{k_n} \to \sup_{\ell} a_{\ell}$ and $a_{m_n} \to \inf_{\ell} a_{\ell}$.Could you give me a hint how we could find the desired subsequences? (Thinking)
 
Physics news on Phys.org
Hey evinda!

I don't think it's true. (Worried)

Suppose we take the sequence $(a_n) = (0,2,1,1,1,1,...)$.
Then it's bounded and its supremum is $2$, but there is no subsequence that converge to $2$ is there? (Wondering)
 
Klaas van Aarsen said:
Hey evinda!

I don't think it's true. (Worried)

Suppose we take the sequence $(a_n) = (0,2,1,1,1,1,...)$.
Then it's bounded and its supremum is $2$, but there is no subsequence that converge to $2$ is there? (Wondering)
That sequence attains its supremum (and infimum). evinda is looking at bounded sequences that do not attain their least upper or greatest lower bounds.

@evinda:
This is my suggestion. Let $s=\sup_la_l$. Try and construct a subsequence $\left(a_{k_n}\right)$ as follows. Let $a_{k_1}=a_1$. Then there exists $a_{n_1}$ such that $a_{k_1}<\dfrac{a_{k_1}+s}2<a_{n_1}<s$ since $s$ is the least upper bound. Let $a_{k_2}=a_{n_1}$. Now $\exists a_{n_2}$ such that $a_{k_2}<\dfrac{a_{k_2}+s}2<a_{n_2}<s$; let $a_{k_3}=a_{n_2}$. Continue this way to get the subsequence $\left(a_{k_n}\right)$ where at the $i$th stage $\exists a_{n_i}$ such that $a_{k_i}<\dfrac{a_{k_i}+s}2<a_{n_i}<s$ and you let $a_{k_{i+1}}=a_{n_i}$. Clearly $\left(a_{k_n}\right)$ is increasing and $\dfrac{a_{k_1}+\left(2^n-1\right)s}{2^n}<a_{k_{n+1}}<s$ (easily proved by induction); since $\dfrac{a_{k_1}+\left(2^n-1\right)s}{2^n}\to s$ as $n\to\infty$, $\displaystyle\lim_{n\to\infty}a_{k_n}=s$ by the squeeze theorem.

Similarly for the other subsequence $\left(a_{m_n}\right)$.
 
Last edited:
Hi Everyone,

Wanted to politely jump into say that the construction above needs a slight modification since it does not ensure that the subsequence we select converges to the supremum. Ignoring the infimum stuff, consider the sequence defined by: $a_{2n+1}=-\dfrac{1}{2n+1}$ and $a_{2n}=1-\dfrac{1}{2n}.$ Then it is possible to have selected the subsequence $-1, -1/3, -1/5, \ldots,$ which does not converge to the supremum value of 1.

Note: I admit this example does not possesses the strict inequality property on the infimum, but that is independent of what we are considering here.
 
GJA said:
Hi Everyone,

Wanted to politely jump into say that the construction above needs a slight modification since it does not ensure that the subsequence we select converges to the supremum. Ignoring the infimum stuff, consider the sequence defined by: $a_{2n+1}=-\dfrac{1}{2n+1}$ and $a_{2n}=1-\dfrac{1}{2n}.$ Then it is possible to have selected the subsequence $-1, -1/3, -1/5, \ldots,$ which does not converge to the supremum value of 1.

Note: I admit this example does not possesses the strict inequality property on the infimum, but that is independent of what we are considering here.
Thanks GJA. I also noticed the same thing and was editing my post as you posted; I think the edited version will work now. (Nod)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K