MHB Show Integral of $f(z)$ with Exponential Form

Click For Summary
The discussion focuses on demonstrating the imaginary part of the exponential function involving complex variables, specifically showing that Im(exp(ae^(be^(icx)))) equals a specific sine function multiplied by an exponential term. It then transitions to integrating the function f(z) around a contour that includes the real axis and the upper half of a circle, leading to a specific integral result. The integral of interest is shown to equal a formula involving exponential terms and π/2. A key step in the proof involves confirming that the limit of the integral over the contour approaches iπe^a as R approaches infinity. This establishes the relationship between the integral and the exponential function in the context of complex analysis.
polygamma
Messages
227
Reaction score
0
Show that $ \displaystyle \text{Im} \ \exp \left( ae^{be^{i c \ x}} \right) = \exp \left( ae^{b\cos(cx)\cos (b\sin cx)} \right) \sin \left( a\sin (b\sin c x) e^{b\cos cx} \right) $.EDIT: Then by integrating $ \displaystyle f(z) = \frac{z \exp ( ae^{be^{ic \ x}} )}{z^{2}+d^{2}}$ around a contour that consists of the real axis and the upper half of the circle $|z|=R$, show that

$$ \int_{0}^{\infty}\frac{ x\exp \left( ae^{b\cos(cx)\cos (b\sin cx)}\right) \sin \left( a\sin (b\sin cx) e^{b\cos cx} \right)}{x^{2}+d^{2}}\ dx = \frac{\pi}{2}\left( \exp \left( ae^{be^{-c \ d}} \right)-e^{a}\right)$$This requires showing that $ \displaystyle \lim_{R \to \infty} \int_{C_{R}} f(z) \ dz = i \pi e^{a}$ where $C_{R}$ is the upper half of the circle $|z|=R$.
 
Last edited:
Mathematics news on Phys.org
$$ \int_{C_{R}}f(z)\ dz =\int_{C_{R}}\frac{z}{z^{2}+d^{2}}\ dz+a\int_{C_{R}}\frac{ze^{be^{icx}}}{z^{2}+d^{2}}\ dz+\frac{a^{2}}{2!}\int_{C_{R}}\frac{ze^{2be^{icx}}}{z^{2}+d^{2}}\ dz+\ldots $$

$$ =\int_{C_{R}}\frac{z}{z^{2}+d^{2}}\ dz+a\left(\int_{C_{R}}\frac{z}{z^{2}+d^{2}}\ dz+b\int_{C_{R}}\frac{ze^{icz}}{z^{2}+d^{2}}+\frac{b^{2}}{2!}\int_{C_{R}}\frac{z e^{2icz}}{z^{2}+d^{2}}\ dz+\ldots\right) $$

$$ +\ \frac{a^{2}}{2!}\left(\int_{C_{R}}\frac{z}{z^{2}+d^{2}}\ dz+2b\int_{C_{R}}\frac{ze^{2icz}}{z^{2}+d^{2}}+ \frac{4b^{2}}{2!} \int_{C_{R}} \frac{z e^{4icz}}{z^{2}+d^{2}}\ dz+\ldots\right)+\ldots $$Then using Jordan's lemma and the fact that $ \displaystyle \lim_{|z| \to \infty} z \frac{z}{z^{2}+d^{2}} = 1$,

$$ \lim_{R\to\infty}\int_{C_{R}}f(z)\ dz =\pi i+a (\pi i+0+0+\ldots)+\frac{a^{2}}{2!}(\pi i+0+0+\ldots)+\ldots $$

$$ = i\pi\left( 1+a+\frac{a^{2}}{2!}+\ldots\right) = i\pi e^{a} $$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
5K