Show Integral of $f(z)$ with Exponential Form

Click For Summary
SUMMARY

The discussion focuses on demonstrating the integral of the function \( f(z) = \frac{z \exp(a e^{b e^{i c x}})}{z^2 + d^2} \) using contour integration techniques. It establishes that the imaginary part of the exponential function can be expressed as \( \exp(a e^{b \cos(cx) \cos(b \sin cx)}) \sin(a \sin(b \sin cx) e^{b \cos cx}) \). The integral evaluates to \( \frac{\pi}{2} \left( \exp(a e^{b e^{-c d}}) - e^a \right) \) by showing that \( \lim_{R \to \infty} \int_{C_R} f(z) \, dz = i \pi e^a \), where \( C_R \) is the upper half of the circle with radius \( R \).

PREREQUISITES
  • Complex analysis, specifically contour integration
  • Understanding of exponential functions in complex variables
  • Knowledge of the residue theorem
  • Familiarity with trigonometric identities and their applications in integration
NEXT STEPS
  • Study the residue theorem in complex analysis
  • Learn about contour integration techniques in complex variables
  • Explore the properties of exponential functions in complex analysis
  • Investigate the application of trigonometric identities in integrals
USEFUL FOR

Mathematicians, physicists, and engineering students focusing on complex analysis, particularly those interested in advanced integration techniques and applications of exponential functions in integrals.

polygamma
Messages
227
Reaction score
0
Show that $ \displaystyle \text{Im} \ \exp \left( ae^{be^{i c \ x}} \right) = \exp \left( ae^{b\cos(cx)\cos (b\sin cx)} \right) \sin \left( a\sin (b\sin c x) e^{b\cos cx} \right) $.EDIT: Then by integrating $ \displaystyle f(z) = \frac{z \exp ( ae^{be^{ic \ x}} )}{z^{2}+d^{2}}$ around a contour that consists of the real axis and the upper half of the circle $|z|=R$, show that

$$ \int_{0}^{\infty}\frac{ x\exp \left( ae^{b\cos(cx)\cos (b\sin cx)}\right) \sin \left( a\sin (b\sin cx) e^{b\cos cx} \right)}{x^{2}+d^{2}}\ dx = \frac{\pi}{2}\left( \exp \left( ae^{be^{-c \ d}} \right)-e^{a}\right)$$This requires showing that $ \displaystyle \lim_{R \to \infty} \int_{C_{R}} f(z) \ dz = i \pi e^{a}$ where $C_{R}$ is the upper half of the circle $|z|=R$.
 
Last edited:
Physics news on Phys.org
$$ \int_{C_{R}}f(z)\ dz =\int_{C_{R}}\frac{z}{z^{2}+d^{2}}\ dz+a\int_{C_{R}}\frac{ze^{be^{icx}}}{z^{2}+d^{2}}\ dz+\frac{a^{2}}{2!}\int_{C_{R}}\frac{ze^{2be^{icx}}}{z^{2}+d^{2}}\ dz+\ldots $$

$$ =\int_{C_{R}}\frac{z}{z^{2}+d^{2}}\ dz+a\left(\int_{C_{R}}\frac{z}{z^{2}+d^{2}}\ dz+b\int_{C_{R}}\frac{ze^{icz}}{z^{2}+d^{2}}+\frac{b^{2}}{2!}\int_{C_{R}}\frac{z e^{2icz}}{z^{2}+d^{2}}\ dz+\ldots\right) $$

$$ +\ \frac{a^{2}}{2!}\left(\int_{C_{R}}\frac{z}{z^{2}+d^{2}}\ dz+2b\int_{C_{R}}\frac{ze^{2icz}}{z^{2}+d^{2}}+ \frac{4b^{2}}{2!} \int_{C_{R}} \frac{z e^{4icz}}{z^{2}+d^{2}}\ dz+\ldots\right)+\ldots $$Then using Jordan's lemma and the fact that $ \displaystyle \lim_{|z| \to \infty} z \frac{z}{z^{2}+d^{2}} = 1$,

$$ \lim_{R\to\infty}\int_{C_{R}}f(z)\ dz =\pi i+a (\pi i+0+0+\ldots)+\frac{a^{2}}{2!}(\pi i+0+0+\ldots)+\ldots $$

$$ = i\pi\left( 1+a+\frac{a^{2}}{2!}+\ldots\right) = i\pi e^{a} $$
 

Similar threads

  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 19 ·
Replies
19
Views
3K