Show that a partial molar property is an intensive property

Click For Summary

Homework Help Overview

The discussion revolves around the concept of partial molar properties in the context of thermodynamics, specifically exploring whether these properties can be classified as intensive properties. Participants are analyzing mathematical expressions and derivatives related to energy and composition variables.

Discussion Character

  • Mathematical reasoning, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants are attempting to derive relationships involving partial derivatives of energy with respect to composition variables. Questions arise regarding the dependence of certain terms on the variables involved and the correct application of index notation in summations.

Discussion Status

There is an ongoing exploration of the mathematical formulation, with participants providing corrections and clarifications on notation. Some guidance has been offered regarding the proper use of indices in derivatives, but no consensus has been reached on the overall proof or interpretation of the results.

Contextual Notes

Participants reference a specific textbook for further derivation insights, indicating that additional resources may be relevant to the discussion. There is also mention of expressing certain terms in a specific mathematical form, which may influence the direction of the discussion.

mcas
Messages
22
Reaction score
5
Homework Statement
Show that a partial molar property is an intensive property
Relevant Equations
Intensive property ##I##: ##\sum_{i=1}^{\alpha} (\frac{\partial I}{\partial n_i}n_i)=0##
Extensive property ##E##: ##\sum_{i=1}^{\alpha} (\frac{\partial E}{\partial n_i}n_i)=E##
Partial molar property for an extensive property ##E##: ##E^{(p)}_i=(\frac{\partial E}{\partial n_i})##
I started by taking a derivative:
$$E = \sum_{i=1}^{\alpha} (E_i^{(p)} n_i) \ \ \ | \cdot \frac{\partial}{\partial n_i}$$
$$\frac{\partial E}{\partial n_i}=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i + E_i^{(p)} \frac{\partial n_i}{\partial n_i}]$$
$$\frac{\partial E}{\partial n_i}=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i + E_i^{(p)}]$$
$$\frac{\partial E}{\partial n_i}=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i + (\frac{\partial E}{\partial n_i})]$$
$$\frac{\partial E}{\partial n_i} - E=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i ]$$
I'm not sure what to do know. I also have a question regarding theleft hand side -- does ##E## defined as ##E =\sum_{i=1}^{\alpha} (\frac{\partial E}{\partial n_i}n_i)## depend on ##n_i##? Or is ##\frac{\partial E}{\partial n_i}## equal to 0?
 
Physics news on Phys.org
Be careful with your indices. If
E = Σif(ni)
it does not follow that
dE/dni = Σidf(ni)/dni
You want to use a different index label and say
dE/dnj = Σidf(ni)/dnj for a given j.
 
  • Like
Likes   Reactions: mcas
mjc123 said:
Be careful with your indices. If
E = Σif(ni)
it does not follow that
dE/dni = Σidf(ni)/dni
You want to use a different index label and say
dE/dnj = Σidf(ni)/dnj for a given j.
Thank you! That looks much better now.
Now I get
$$\frac{\partial E}{\partial n_j}=\sum_{i=1}^{\alpha} [\frac{\partial E_j^{(p)}}{\partial n_i}n_i ]$$
And I'm still confused as to what ##\frac{\partial E}{\partial n_j}## is and how to deal with this term.
 
There is a very interesting derivation of this in Chapter 11, Smith and Van Ness, Introduction to Chemical Engineering Thermodynamics.
 
  • Like
Likes   Reactions: mcas
mcas said:
Now I get
$$\frac {\partial E} {\partial n_j} = \sum_{i=1}^α[\frac {\partial E_j^{(p)}} {\partial n_i}ni]$$
No, that should be
$$\frac {\partial E} {\partial n_j} = \sum_{i=1}^α[\frac {\partial E_i^{(p)}} {\partial n_j}ni + E_i^{(p)}\frac {\partial n_i} {\partial n_j}]$$
I don't know if you're on the right lines with the proof, I'm just correcting your notation.
 
mjc123 said:
No, that should be
$$\frac {\partial E} {\partial n_j} = \sum_{i=1}^α[\frac {\partial E_i^{(p)}} {\partial n_j}ni + E_i^{(p)}\frac {\partial n_i} {\partial n_j}]$$
I don't know if you're on the right lines with the proof, I'm just correcting your notation.
Thank you! Now I just need to express ##\frac {\partial n_i} {\partial n_j}## as ##\delta_{ij}## and it's proven.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 32 ·
2
Replies
32
Views
3K
Replies
4
Views
825
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K