Show that a partial molar property is an intensive property

mcas
Messages
22
Reaction score
5
Homework Statement
Show that a partial molar property is an intensive property
Relevant Equations
Intensive property ##I##: ##\sum_{i=1}^{\alpha} (\frac{\partial I}{\partial n_i}n_i)=0##
Extensive property ##E##: ##\sum_{i=1}^{\alpha} (\frac{\partial E}{\partial n_i}n_i)=E##
Partial molar property for an extensive property ##E##: ##E^{(p)}_i=(\frac{\partial E}{\partial n_i})##
I started by taking a derivative:
$$E = \sum_{i=1}^{\alpha} (E_i^{(p)} n_i) \ \ \ | \cdot \frac{\partial}{\partial n_i}$$
$$\frac{\partial E}{\partial n_i}=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i + E_i^{(p)} \frac{\partial n_i}{\partial n_i}]$$
$$\frac{\partial E}{\partial n_i}=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i + E_i^{(p)}]$$
$$\frac{\partial E}{\partial n_i}=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i + (\frac{\partial E}{\partial n_i})]$$
$$\frac{\partial E}{\partial n_i} - E=\sum_{i=1}^{\alpha} [\frac{\partial E_i^{(p)}}{\partial n_i}n_i ]$$
I'm not sure what to do know. I also have a question regarding theleft hand side -- does ##E## defined as ##E =\sum_{i=1}^{\alpha} (\frac{\partial E}{\partial n_i}n_i)## depend on ##n_i##? Or is ##\frac{\partial E}{\partial n_i}## equal to 0?
 
Physics news on Phys.org
Be careful with your indices. If
E = Σif(ni)
it does not follow that
dE/dni = Σidf(ni)/dni
You want to use a different index label and say
dE/dnj = Σidf(ni)/dnj for a given j.
 
mjc123 said:
Be careful with your indices. If
E = Σif(ni)
it does not follow that
dE/dni = Σidf(ni)/dni
You want to use a different index label and say
dE/dnj = Σidf(ni)/dnj for a given j.
Thank you! That looks much better now.
Now I get
$$\frac{\partial E}{\partial n_j}=\sum_{i=1}^{\alpha} [\frac{\partial E_j^{(p)}}{\partial n_i}n_i ]$$
And I'm still confused as to what ##\frac{\partial E}{\partial n_j}## is and how to deal with this term.
 
There is a very interesting derivation of this in Chapter 11, Smith and Van Ness, Introduction to Chemical Engineering Thermodynamics.
 
mcas said:
Now I get
$$\frac {\partial E} {\partial n_j} = \sum_{i=1}^α[\frac {\partial E_j^{(p)}} {\partial n_i}ni]$$
No, that should be
$$\frac {\partial E} {\partial n_j} = \sum_{i=1}^α[\frac {\partial E_i^{(p)}} {\partial n_j}ni + E_i^{(p)}\frac {\partial n_i} {\partial n_j}]$$
I don't know if you're on the right lines with the proof, I'm just correcting your notation.
 
mjc123 said:
No, that should be
$$\frac {\partial E} {\partial n_j} = \sum_{i=1}^α[\frac {\partial E_i^{(p)}} {\partial n_j}ni + E_i^{(p)}\frac {\partial n_i} {\partial n_j}]$$
I don't know if you're on the right lines with the proof, I'm just correcting your notation.
Thank you! Now I just need to express ##\frac {\partial n_i} {\partial n_j}## as ##\delta_{ij}## and it's proven.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top