Show that an expected value of a vacuum state is equal to 1

Click For Summary
SUMMARY

The discussion centers on the evaluation of the expected value of a vacuum state, specifically the expression involving annihilation operators ##\hat{c}_{k\alpha}## and the vacuum state ##\ket{\phi_0}##. It is established that if ##\ket{\phi_0}## is the standard vacuum state, then the expectation value vanishes due to the annihilation operator ##\hat{c}_{-k \downarrow}## acting on it. A mistake in the homework statement was identified, where the operator should have been conjugated for the expected value to equal one, rather than zero as initially presented.

PREREQUISITES
  • Understanding of quantum mechanics and quantum field theory concepts
  • Familiarity with annihilation and creation operators, specifically ##\hat{c}_{k\alpha}##
  • Knowledge of vacuum states in quantum mechanics, particularly ##\ket{\phi_0}##
  • Experience with expectation values in quantum systems
NEXT STEPS
  • Review the properties of annihilation and creation operators in quantum mechanics
  • Study the definition and implications of vacuum states in quantum field theory
  • Learn about the calculation of expectation values in quantum systems
  • Examine common mistakes in quantum mechanics problem statements and their resolutions
USEFUL FOR

Students and researchers in quantum mechanics, particularly those studying quantum field theory and the behavior of vacuum states. This discussion is also beneficial for educators preparing quantum mechanics problems.

mcas
Messages
22
Reaction score
5
Homework Statement
Using the following anticommutator relations of fermionic one-particle operators:
[itex]\{\hat{c}_{k\alpha},\hat{c}_{k'\beta} \}= \{ \hat{c}^\dagger_{k\alpha}, \hat{c}^\dagger_{k'\beta} \} = 0[/itex]
[itex]\{\hat{c}_{k\alpha},\hat{c}^\dagger_{k'\beta} \}=\delta_{kk'}\delta_{\alpha\beta}[/itex]

Show that the expected value for a vacuum state [itex]|\phi_0>[/itex] is:

[itex] <\phi_0| \hat{c}_{-k \downarrow} \hat{c}_{k \uparrow}\hat{c}^\dagger_{k \uparrow}\hat{c}_{-k \downarrow}|\phi_0>=1
[/itex]
Relevant Equations
Given in the homework statement
<br /> \langle \phi_0| \hat{c}_{-k \downarrow} \hat{c}_{k \uparrow}\hat{c}^\dagger_{k \uparrow}\hat{c}_{-k \downarrow}|\phi_0\rangle = \\ \langle \phi_0| - \hat{c}_{k \uparrow} \hat{c}_{-k \downarrow} \hat{c}^\dagger_{k \uparrow}\hat{c}_{-k \downarrow}|\phi_0\rangle = \\ \langle \phi_0| \hat{c}_{k \uparrow} \hat{c}^\dagger_{k \uparrow} \hat{c}_{-k \downarrow}\hat{c}_{-k \downarrow}|\phi_0\rangle = \\ \langle \phi_0|(1- \hat{c}^\dagger_{k \uparrow} \hat{c}_{k \uparrow} ) \hat{c}_{-k \downarrow}\hat{c}_{-k \downarrow}|\phi_0\rangle = \\ \langle \phi_0|\hat{c}_{-k \downarrow}\hat{c}_{-k \downarrow}|\phi_0\rangle - \langle \phi_0|\hat{c}^\dagger_{k \uparrow} \hat{c}_{k \uparrow} \hat{c}_{-k \downarrow}\hat{c}_{-k \downarrow}|\phi_0\rangle<br />

Then I changed \hat{c}^\dagger_{k \uparrow} \hat{c}_{k \uparrow} in the second term to (1- \hat{c}^\dagger_{k \uparrow} \hat{c}_{k \uparrow} ) and the result was \langle \phi_0| \hat{c}_{-k \downarrow} \hat{c}_{k \uparrow}\hat{c}^\dagger_{k \uparrow}\hat{c}_{-k \downarrow}|\phi_0\rangle which is exactly what I sarted from.

I don't know where to go from this so I would really appreciate any help!
 
Last edited:
Physics news on Phys.org
Where did you get this problem from?

Are the ##\hat{c}_{k\alpha}## usual annihilation operators?
How is the ##\ket{\phi_0}## state defined?

If ##\ket{\phi_0}## is the usual vacuum defined from the ##\hat{c}## operators then, if I'm not wrong, by definition ##\hat{c}_{-k \downarrow} \ket{\phi_0}=0## and the whole expectation value vanishes. So, either I'm confused by something, or the problem is wrong, or you have extra information that is crucial for solving the problem.
 
  • Like
Likes   Reactions: mcas and anuttarasammyak
Gaussian97 said:
Where did you get this problem from?

Are the ##\hat{c}_{k\alpha}## usual annihilation operators?
How is the ##\ket{\phi_0}## state defined?

If ##\ket{\phi_0}## is the usual vacuum defined from the ##\hat{c}## operators then, if I'm not wrong, by definition ##\hat{c}_{-k \downarrow} \ket{\phi_0}=0## and the whole expectation value vanishes. So, either I'm confused by something, or the problem is wrong, or you have extra information that is crucial for solving the problem.
It's a problem formulated by my professor.
After you post I contacted him and indeed, he made a mistake in the homework statement, as the last operator \hat{c}_{-k \downarrow} should be conjugated for the expected value to be one. In the original statement, the value will be 0.
Thank you!
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 47 ·
2
Replies
47
Views
6K
Replies
0
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
Replies
10
Views
2K
Replies
4
Views
2K