Show that square root of 3 is an irrational number

AI Thread Summary
The discussion demonstrates that the square root of 3 is irrational by negating the possibility of it being rational. It asserts that if √3 were rational, it could be expressed as a fraction of two integers a and b, leading to the equation a² = 3b². This results in a contradiction regarding the prime factorization of a² and b², as the presence of the factor 3 on the right side creates an odd count, while the left side maintains an even count. Therefore, the assumption that √3 is rational is proven false, confirming that √3 is indeed irrational. The argument effectively utilizes the fundamental theorem of arithmetic to support its conclusion.
docnet
Messages
796
Reaction score
488
Homework Statement
Show that ##\sqrt{3}## is irrational
Relevant Equations
The fundamental theorem of arithmetic
##\sqrt{3}## is irrational. The negation of the statement is that ##\sqrt{3}## is rational.

##\sqrt{3}## is rational if there exist nonzero integers ##a## and ##b## such that ##\frac{a}{b}=\sqrt 3##. The fundamental theorem of arithmetic states that every integer is representable uniquely as a product of prime numbers, up to the order of the factors. So ##a## and ##b## are products of prime numbers.
$$\frac{a}{b}=\sqrt{3} \Rightarrow a^2=3b^2$$
Squaring ##a## and ##b## leads to the prime factors ## a^2## and ##b^2## existing in pairs. But, the right hand side is multiplied by ##3##, which means there is an odd number of ##3## in the right hand side. This leads to a contradiction because there is an even number of ##3##s on the left hand side.

So the negated statement is false, and hence the original statement is true.
 
  • Like
Likes DaveE and PeroK
Physics news on Phys.org
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top