Show that the given function is decreasing

Click For Summary
The discussion focuses on proving that the function α(k) = (1 - 1/k)^(ln(2)k) - (1 - 2/k)^(ln(2)k) is decreasing for k in [3, ∞). Participants explore various approaches, including analyzing the first derivative and comparing α(k) with α(k+1). There is a consensus that the derivative must be shown to be non-positive, but complications arise in the calculations. Ultimately, one participant suggests using calculus to derive the function and confirm its decreasing nature by evaluating the behavior of its derivative. The conclusion is that the function has no turning points for k ≥ 3, confirming its decreasing trend.
idobido
Messages
10
Reaction score
0
Homework Statement
show that the given function is decreasing.
Relevant Equations
derivative
induction
As a follow up for : https://www.physicsforums.com/threa...there-is-i-n-s-t-1-1-k-i-1-2-k-i-1-4.1054669/

show that ## \alpha\left(k\right)\ :=\ \left(1-\tfrac{1}{k}\right)^{\ln\left(2\right)k}-\left(1-\tfrac{2}{k}\right)^{\ln\left(2\right)k} ## is decreasing for ## k\in\left[3,\infty\right) ##

thing I've tried:
showing that first derivative is non-positive, but I've got complicated expression i cannot handle with (## k = x ##):

## \dfrac{\left(\frac{x-1}{x}\right)^{\ln\left(2\right)\,x}\,\left(\ln\left(2\right)\ln\left(\frac{x-1}{x}\right)\left(x-1\right)+\ln\left(2\right)\right)}{x-1}-\dfrac{\left(\frac{x-2}{x}\right)^{\ln\left(2\right)\,x}\,\left(\ln\left(2\right)\ln\left(\frac{x-2}{x}\right)\left(x-2\right)+2\ln\left(2\right)\right)}{x-2} ##

trying to compare
## \alpha\left(k\right)\ ## with ## \alpha\left(k+1\right)\ ##
also got complicated.
 
Physics news on Phys.org
Set ##f(k) =\left(1-\dfrac{1}{k}\right)^{\log 2},## ##\varepsilon(k) =\dfrac{1}{k}## and ##g(k)=(f(k)-\varepsilon(k) )^{\log 2}## and show that
\begin{align*}
\dfrac{d}{dk}\left(f(k)^k-g(k)^k\right)&<0
\end{align*}
... and don't forget to write down your final calculation backward!
 
Last edited:
did you notice that ##
g(k) = \left( \left(1 - \frac{1}{k}\right)^{\log 2} - \frac{1}{k} \right)^{\log 2} \neq \left(1 - \frac{2}{k}\right)^{\log 2}
## ?
 
idobido said:
did you notice that ##
g(k) = \left( \left(1 - \frac{1}{k}\right)^{\log 2} - \frac{1}{k} \right)^{\log 2} \neq \left(1 - \frac{2}{k}\right)^{\log 2}
##
You are right, I overlooked that. So set ##f(k)=1-\dfrac{1}{k}## and ##g(k)=f(k)-\dfrac{1}{k}.## Shouldn't make a difference since we cancel ##k\log(2)## anyway.
 
fresh_42 said:
You are right, I overlooked that. So set ##f(k)=1-\dfrac{1}{k}## and ##g(k)=f(k)-\dfrac{1}{k}.## Shouldn't make a difference since we cancel ##k\log(2)## anyway.
how does it cancelled i've got
##
\frac{d}{dk}\left( f(k)^k - g(k)^k \right) = \left( \ln f(k) + k \cdot \frac{1}{f(k)} \cdot f'(k) \right) \cdot f(k)^k - \left( \ln g(k) + k \cdot \frac{1}{g(k)} \cdot g'(k) \right) \cdot g(k)^k
##
 
idobido said:
how does it cancelled i've got
##
\frac{d}{dk}\left( f(k)^k - g(k)^k \right) = \left( \ln f(k) + k \cdot \frac{1}{f(k)} \cdot f'(k) \right) \cdot f(k)^k - \left( \ln g(k) + k \cdot \frac{1}{g(k)} \cdot g'(k) \right) \cdot g(k)^k
##
You are thinking way too complicated. We want to show that
\begin{align*}
0&>\dfrac{d}{dk}\alpha(k) \\
0&>\dfrac{d}{dk}\left[\left(1-\dfrac{1}{k}\right)^{k\log 2}-\left(1-\dfrac{2}{k}\right)^{k\log 2}\right]\\
0&>\dfrac{d}{dk}\left(1-\dfrac{1}{k}\right)^{k\log 2}-\dfrac{d}{dk}\left(1-\dfrac{2}{k}\right)^{k\log 2}\\
0&>{k\log 2}\dfrac{d}{dk}\left(1-\dfrac{1}{k}\right)-{k\log 2}\dfrac{d}{dk}\left(1-\dfrac{2}{k}\right)\\
&\phantom{>}\ldots
\end{align*}
... and at the end of it: rewrite it backward.
 
did you notice that ##
fresh_42 said:
You are thinking way too complicated. We want to show that
\begin{align*}
0&>\dfrac{d}{dk}\alpha(k) \\
0&>\dfrac{d}{dk}\left[\left(1-\dfrac{1}{k}\right)^{k\log 2}-\left(1-\dfrac{2}{k}\right)^{k\log 2}\right]\\
0&>\dfrac{d}{dk}\left(1-\dfrac{1}{k}\right)^{k\log 2}-\dfrac{d}{dk}\left(1-\dfrac{2}{k}\right)^{k\log 2}\\
0&>{k\log 2}\dfrac{d}{dk}\left(1-\dfrac{1}{k}\right)-{k\log 2}\dfrac{d}{dk}\left(1-\dfrac{2}{k}\right)\\
&\phantom{>}\ldots
\end{align*}
... and at the end of it: rewrite it backward.
i really can't understand why the last result is true, you are applying ##
\sqrt{k \cdot \log 2}
##
on both expressions inside the derivative brackets i.e. (before the derivative)? why is that true that the inequality will hold after the derivative?
 
idobido said:
did you notice that ##

i really can't understand why the last result is true, you are applying ##
\sqrt{k \cdot \log 2}
##
on both expressions inside the derivative brackets i.e. (before the derivative)? why is that true that the inequality will hold after the derivative?

You are right. I made a mistake with the chain rule. Sorry.
 
Note: I took a wrong shortcut with the derivative, so this is wrong. Corrected solution is on the way!

I think you can crank it out using calculus. Let:
$$f(x) = \big (\frac {x-1} x\big)^{ax} - \big (\frac {x-2} x\big)^{ax}$$Then$$f'(x) = a\ln\big (\frac {x-1} x\big)\big (\frac {x-1} x\big)^{ax}\big(\frac 1 {x^2}\big) - a\ln\big (\frac {x-2} x\big)\big (\frac {x-2} x\big)^{ax}\big(\frac 2 {x^2}\big)$$Looking for ##f'(x) = 0## gives$$\frac{\ln\big (\frac x {x-1} \big)}{\ln\big (\frac x {x-2} \big)} = 2\big (\frac{x-2}{x-1})^{ax}$$The left-hand side (for ##x \ge 3##) is an increasing function with a limit of ##\frac 1 2##. The right-hand side is increasing (for ##x \ge 3##) with a limit of ##1##. And, in any case, for ##a = \ln 2##, it is greater than ##\frac 1 2##.

This means that for ##a = \ln 2## the function has no turning points for ##x \ge 3##, hence is decreasing.
 
Last edited:
  • #10
I think I have managed to crank out a solution this time. The derivative in post #1 is correct. Using ##a = \ln(2)##:
$$f(x) =\big (\frac {x-1} x\big)^{ax} - \big (\frac {x-2} x\big)^{ax}$$Then$$f'(x) = a\big (\frac {x-1} x\big)^{ax}\bigg [\ln\big (\frac {x-1} x\big) + \frac 1 {x-1} \bigg ] - a\big (\frac {x-2} x\big)^{ax}\bigg [\ln\big (\frac {x-2} x\big) + \frac 2 {x-2} \bigg ]$$By estimating ##f(3)## and ##f(4)## it is enough to show that ##f'(x) \ne 0## for ##x > 3##. Then we can conclude that ##f## is decreasing for ##x > 3##. We have ##f'(x) = 0## iff:
$$\frac{\ln(x-1) - ln(x) + \frac 1 {x-1}}{\ln(x-2) - ln(x) + \frac 2 {x-2}} = \big (\frac{x-2}{x-1})^{ax}$$The RHS is increasing from greater than ##\frac 1 4## to ##1##. It is enough to show that the LHS is less than ##\frac 1 4## for ##x \ge 3##. Note that ##p(3) \approx 0.1## and ##\lim_{x \to \infty} LHS = \frac 1 4##. In other words, for ##x \ge 3## it is enough to show that:
$$\ln(x-2) - ln(x) + \frac 2 {x-2} > 4 \big [\ln(x-1) - ln(x) + \frac 1 {x-1}\big]$$The trick I used is to set ##y = \frac 1 x## and then we need to show that for ##0 < y < \frac 1 3## we have:
$$\ln(1 - 2y) + \frac{2y}{1-2y} > 4\big [ \ln(1-y) + \frac{y}{1-y} \big ]$$Using Taylor series we have:
$$\ln(1 - 2y) + \frac{2y}{1-2y} = \frac 1 2 (2y)^2 + \frac 2 3 (2y)^3 + \frac 3 4 (2y)^4 \dots$$$$4\big [\ln(1 - y) + \frac{y}{1-y} \big ] = \frac 1 2 (2y)^2 + \frac 2 3 (\frac 1 2)(2y)^3 + \frac 3 4 (\frac 1 4) (2y)^4 \dots$$And that's it, I hope!